/* * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"). * You may not use this file except in compliance with the License. * A copy of the License is located at * * http://aws.amazon.com/apache2.0 * * or in the "license" file accompanying this file. This file is distributed * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either * express or implied. See the License for the specific language governing * permissions and limitations under the License. */ /* * Do not modify this file. This file is generated from the sagemaker-2017-07-24.normal.json service model. */ using System; using System.Collections.Generic; using System.Xml.Serialization; using System.Text; using System.IO; using System.Net; using Amazon.Runtime; using Amazon.Runtime.Internal; namespace Amazon.SageMaker.Model { /// /// The collection of settings used by an AutoML job V2 for the TABULAR problem /// type. /// public partial class TabularJobConfig { private CandidateGenerationConfig _candidateGenerationConfig; private AutoMLJobCompletionCriteria _completionCriteria; private string _featureSpecificationS3Uri; private bool? _generateCandidateDefinitionsOnly; private AutoMLMode _mode; private ProblemType _problemType; private string _sampleWeightAttributeName; private string _targetAttributeName; /// /// Gets and sets the property CandidateGenerationConfig. /// /// The configuration information of how model candidates are generated. /// /// public CandidateGenerationConfig CandidateGenerationConfig { get { return this._candidateGenerationConfig; } set { this._candidateGenerationConfig = value; } } // Check to see if CandidateGenerationConfig property is set internal bool IsSetCandidateGenerationConfig() { return this._candidateGenerationConfig != null; } /// /// Gets and sets the property CompletionCriteria. /// public AutoMLJobCompletionCriteria CompletionCriteria { get { return this._completionCriteria; } set { this._completionCriteria = value; } } // Check to see if CompletionCriteria property is set internal bool IsSetCompletionCriteria() { return this._completionCriteria != null; } /// /// Gets and sets the property FeatureSpecificationS3Uri. /// /// A URL to the Amazon S3 data source containing selected features from the input data /// source to run an Autopilot job V2. You can input FeatureAttributeNames /// (optional) in JSON format as shown below: /// /// /// /// { "FeatureAttributeNames":["col1", "col2", ...] }. /// /// /// /// You can also specify the data type of the feature (optional) in the format shown below: /// /// /// /// { "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... } } /// /// /// /// /// These column keys may not include the target column. /// /// /// /// In ensembling mode, Autopilot only supports the following data types: numeric, /// categorical, text, and datetime. In HPO mode, /// Autopilot can support numeric, categorical, text, /// datetime, and sequence. /// /// /// /// If only FeatureDataTypes is provided, the column keys (col1, /// col2,..) should be a subset of the column names in the input data. /// /// /// /// If both FeatureDataTypes and FeatureAttributeNames are provided, /// then the column keys should be a subset of the column names provided in FeatureAttributeNames. /// /// /// /// /// The key name FeatureAttributeNames is fixed. The values listed in ["col1", /// "col2", ...] are case sensitive and should be a list of strings containing /// unique values that are a subset of the column names in the input data. The list of /// columns provided must not include the target column. /// /// [AWSProperty(Max=1024)] public string FeatureSpecificationS3Uri { get { return this._featureSpecificationS3Uri; } set { this._featureSpecificationS3Uri = value; } } // Check to see if FeatureSpecificationS3Uri property is set internal bool IsSetFeatureSpecificationS3Uri() { return this._featureSpecificationS3Uri != null; } /// /// Gets and sets the property GenerateCandidateDefinitionsOnly. /// /// Generates possible candidates without training the models. A model candidate is a /// combination of data preprocessors, algorithms, and algorithm parameter settings. /// /// public bool GenerateCandidateDefinitionsOnly { get { return this._generateCandidateDefinitionsOnly.GetValueOrDefault(); } set { this._generateCandidateDefinitionsOnly = value; } } // Check to see if GenerateCandidateDefinitionsOnly property is set internal bool IsSetGenerateCandidateDefinitionsOnly() { return this._generateCandidateDefinitionsOnly.HasValue; } /// /// Gets and sets the property Mode. /// /// The method that Autopilot uses to train the data. You can either specify the mode /// manually or let Autopilot choose for you based on the dataset size by selecting AUTO. /// In AUTO mode, Autopilot chooses ENSEMBLING for datasets /// smaller than 100 MB, and HYPERPARAMETER_TUNING for larger ones. /// /// /// /// The ENSEMBLING mode uses a multi-stack ensemble model to predict classification /// and regression tasks directly from your dataset. This machine learning mode combines /// several base models to produce an optimal predictive model. It then uses a stacking /// ensemble method to combine predictions from contributing members. A multi-stack ensemble /// model can provide better performance over a single model by combining the predictive /// capabilities of multiple models. See Autopilot /// algorithm support for a list of algorithms supported by ENSEMBLING /// mode. /// /// /// /// The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters to /// train the best version of a model. HPO automatically selects an algorithm for the /// type of problem you want to solve. Then HPO finds the best hyperparameters according /// to your objective metric. See Autopilot /// algorithm support for a list of algorithms supported by HYPERPARAMETER_TUNING /// mode. /// /// public AutoMLMode Mode { get { return this._mode; } set { this._mode = value; } } // Check to see if Mode property is set internal bool IsSetMode() { return this._mode != null; } /// /// Gets and sets the property ProblemType. /// /// The type of supervised learning problem available for the model candidates of the /// AutoML job V2. For more information, see /// Amazon SageMaker Autopilot problem types. /// /// /// /// You must either specify the type of supervised learning problem in ProblemType /// and provide the AutoMLJobObjective /// metric, or none at all. /// /// /// public ProblemType ProblemType { get { return this._problemType; } set { this._problemType = value; } } // Check to see if ProblemType property is set internal bool IsSetProblemType() { return this._problemType != null; } /// /// Gets and sets the property SampleWeightAttributeName. /// /// If specified, this column name indicates which column of the dataset should be treated /// as sample weights for use by the objective metric during the training, evaluation, /// and the selection of the best model. This column is not considered as a predictive /// feature. For more information on Autopilot metrics, see Metrics /// and validation. /// /// /// /// Sample weights should be numeric, non-negative, with larger values indicating which /// rows are more important than others. Data points that have invalid or no weight value /// are excluded. /// /// /// /// Support for sample weights is available in Ensembling /// mode only. /// /// [AWSProperty(Min=1, Max=256)] public string SampleWeightAttributeName { get { return this._sampleWeightAttributeName; } set { this._sampleWeightAttributeName = value; } } // Check to see if SampleWeightAttributeName property is set internal bool IsSetSampleWeightAttributeName() { return this._sampleWeightAttributeName != null; } /// /// Gets and sets the property TargetAttributeName. /// /// The name of the target variable in supervised learning, usually represented by 'y'. /// /// [AWSProperty(Required=true, Min=1)] public string TargetAttributeName { get { return this._targetAttributeName; } set { this._targetAttributeName = value; } } // Check to see if TargetAttributeName property is set internal bool IsSetTargetAttributeName() { return this._targetAttributeName != null; } } }