{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[](https://github.com/aws/aws-sdk-pandas)\n",
"\n",
"# 9 - Redshift - Append, Overwrite and Upsert\n",
"\n",
"awswrangler's `copy/to_sql` function has three different `mode` options for Redshift.\n",
"\n",
"1 - `append`\n",
"\n",
"2 - `overwrite`\n",
"\n",
"3 - `upsert`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install the optional modules first\n",
"!pip install 'awswrangler[redshift]'"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import awswrangler as wr\n",
"import pandas as pd\n",
"from datetime import date\n",
"\n",
"con = wr.redshift.connect(\"aws-sdk-pandas-redshift\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Enter your bucket name:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" ···········································\n"
]
}
],
"source": [
"import getpass\n",
"bucket = getpass.getpass()\n",
"path = f\"s3://{bucket}/stage/\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Enter your IAM ROLE ARN:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" ····················································································\n"
]
}
],
"source": [
"iam_role = getpass.getpass()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Creating the table (Overwriting if it exists)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" value | \n",
" date | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 2 | \n",
" boo | \n",
" 2020-01-02 | \n",
"
\n",
" \n",
" 1 | \n",
" 1 | \n",
" foo | \n",
" 2020-01-01 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id value date\n",
"0 2 boo 2020-01-02\n",
"1 1 foo 2020-01-01"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.DataFrame({\n",
" \"id\": [1, 2],\n",
" \"value\": [\"foo\", \"boo\"],\n",
" \"date\": [date(2020, 1, 1), date(2020, 1, 2)]\n",
"})\n",
"\n",
"wr.redshift.copy(\n",
" df=df,\n",
" path=path,\n",
" con=con,\n",
" schema=\"public\",\n",
" table=\"my_table\",\n",
" mode=\"overwrite\",\n",
" iam_role=iam_role,\n",
" primary_keys=[\"id\"]\n",
")\n",
"\n",
"wr.redshift.read_sql_table(table=\"my_table\", schema=\"public\", con=con)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Appending"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" value | \n",
" date | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" foo | \n",
" 2020-01-01 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" boo | \n",
" 2020-01-02 | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" bar | \n",
" 2020-01-03 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id value date\n",
"0 1 foo 2020-01-01\n",
"1 2 boo 2020-01-02\n",
"2 3 bar 2020-01-03"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.DataFrame({\n",
" \"id\": [3],\n",
" \"value\": [\"bar\"],\n",
" \"date\": [date(2020, 1, 3)]\n",
"})\n",
"\n",
"wr.redshift.copy(\n",
" df=df,\n",
" path=path,\n",
" con=con,\n",
" schema=\"public\",\n",
" table=\"my_table\",\n",
" mode=\"append\",\n",
" iam_role=iam_role,\n",
" primary_keys=[\"id\"]\n",
")\n",
"\n",
"wr.redshift.read_sql_table(table=\"my_table\", schema=\"public\", con=con)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Upserting"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" value | \n",
" date | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" foo | \n",
" 2020-01-01 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" xoo | \n",
" 2020-01-02 | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" bar | \n",
" 2020-01-03 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id value date\n",
"0 1 foo 2020-01-01\n",
"1 2 xoo 2020-01-02\n",
"2 3 bar 2020-01-03"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.DataFrame({\n",
" \"id\": [2, 3],\n",
" \"value\": [\"xoo\", \"bar\"],\n",
" \"date\": [date(2020, 1, 2), date(2020, 1, 3)]\n",
"})\n",
"\n",
"wr.redshift.copy(\n",
" df=df,\n",
" path=path,\n",
" con=con,\n",
" schema=\"public\",\n",
" table=\"my_table\",\n",
" mode=\"upsert\",\n",
" iam_role=iam_role,\n",
" primary_keys=[\"id\"]\n",
")\n",
"\n",
"wr.redshift.read_sql_table(table=\"my_table\", schema=\"public\", con=con)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Cleaning Up"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"with con.cursor() as cursor:\n",
" cursor.execute(\"DROP TABLE public.my_table\")\n",
"con.close()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.14",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.14"
},
"pycharm": {
"stem_cell": {
"cell_type": "raw",
"metadata": {
"collapsed": false
},
"source": []
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}