{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "[![AWS SDK for pandas](_static/logo.png \"AWS SDK for pandas\")](https://github.com/aws/aws-sdk-pandas)\n", "\n", "# 20 - Spark Table Interoperability\n", "\n", "[awswrangler](https://github.com/aws/aws-sdk-pandas) has no difficulty to insert, overwrite or do any other kind of interaction with a Table created by Apache Spark.\n", "\n", "But if you want to do the opposite (Spark interacting with a table created by awswrangler) you should be aware that awswrangler follows the Hive's format and you must be explicit when using the Spark's `saveAsTable` method:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "spark_df.write.format(\"hive\").saveAsTable(\"database.table\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Or just move forward using the `insertInto` alternative:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "spark_df.write.insertInto(\"database.table\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.9.14", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.14" }, "pycharm": { "stem_cell": { "cell_type": "raw", "metadata": { "collapsed": false }, "source": [] } } }, "nbformat": 4, "nbformat_minor": 4 }