FROM nvidia/cuda:11.2.1-base-ubuntu18.04 LABEL maintainer="Amazon AI" LABEL dlc_major_version="1" # Specify accept-bind-to-port LABEL for inference pipelines to use SAGEMAKER_BIND_TO_PORT # https://docs.aws.amazon.com/sagemaker/latest/dg/inference-pipeline-real-time.html LABEL com.amazonaws.sagemaker.capabilities.accept-bind-to-port=true ARG MMS_VERSION=1.1.8 ARG PYTHON=python3 ARG PYTHON_VERSION=3.7.10 ARG OPEN_MPI_VERSION=4.0.1 # HF ARGS ARG TF_URL=https://aws-tensorflow-binaries.s3.us-west-2.amazonaws.com/tensorflow/r2.5_aws/20220607_224137/cpu/py37/tensorflow_cpu-2.5.3-cp37-cp37m-manylinux2010_x86_64.whl ARG TRANSFORMERS_VERSION ENV PYTHONDONTWRITEBYTECODE=1 \ PYTHONUNBUFFERED=1 \ LD_LIBRARY_PATH="/opt/conda/lib/:${LD_LIBRARY_PATH}:/usr/local/lib" \ PYTHONIOENCODING=UTF-8 \ LANG=C.UTF-8 \ LC_ALL=C.UTF-8 \ TEMP=/home/model-server/tmp \ DEBIAN_FRONTEND=noninteractive ENV PATH /opt/conda/bin:$PATH RUN apt-get update \ # TODO: Remove upgrade statements once packages are updated in base image && apt-get -y upgrade --only-upgrade systemd openssl \ && apt-get install -y --no-install-recommends \ ca-certificates \ build-essential \ libssl1.1 \ openssl \ openjdk-8-jdk-headless \ vim \ wget \ curl \ emacs \ unzip \ git \ libnuma1 \ && apt-get clean \ && rm -rf /var/lib/apt/lists/* RUN curl -L -o ~/miniconda.sh https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh \ && chmod +x ~/miniconda.sh \ && ~/miniconda.sh -b -p /opt/conda \ && rm ~/miniconda.sh \ && /opt/conda/bin/conda update conda \ && /opt/conda/bin/conda install -c conda-forge \ python=$PYTHON_VERSION \ && /opt/conda/bin/conda install -y \ # conda 4.10.0 requires ruamel_yaml to be installed. Currently pinned at latest. ruamel_yaml==0.15.100 \ cython==0.29.12 \ botocore \ mkl-include==2019.4 \ mkl==2019.4 \ && /opt/conda/bin/conda clean -ya RUN pip install --upgrade pip --trusted-host pypi.org --trusted-host files.pythonhosted.org \ && ln -s /opt/conda/bin/pip /usr/local/bin/pip3 \ && pip install packaging==20.4 \ enum-compat==0.0.3 \ # Putting a cap in versions number to avoid potential issues with a new major version\ "urllib3>=1.26.9" \ "cryptography>3.2" RUN wget https://www.open-mpi.org/software/ompi/v4.0/downloads/openmpi-$OPEN_MPI_VERSION.tar.gz \ && gunzip -c openmpi-$OPEN_MPI_VERSION.tar.gz | tar xf - \ && cd openmpi-$OPEN_MPI_VERSION \ && ./configure --prefix=/home/.openmpi \ && make all install \ && cd .. \ && rm openmpi-$OPEN_MPI_VERSION.tar.gz \ && rm -rf openmpi-$OPEN_MPI_VERSION ENV PATH="$PATH:/home/.openmpi/bin" ENV LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/home/.openmpi/lib/" WORKDIR / RUN pip install --no-cache-dir \ multi-model-server==$MMS_VERSION \ sagemaker-inference RUN useradd -m model-server \ && mkdir -p /home/model-server/tmp \ && chown -R model-server /home/model-server COPY mms-entrypoint.py /usr/local/bin/dockerd-entrypoint.py COPY config.properties /etc/sagemaker-mms.properties RUN chmod +x /usr/local/bin/dockerd-entrypoint.py ADD https://raw.githubusercontent.com/aws/deep-learning-containers/master/src/deep_learning_container.py /usr/local/bin/deep_learning_container.py RUN chmod +x /usr/local/bin/deep_learning_container.py ################################# # Hugging Face specific section # ################################# RUN curl https://aws-dlc-licenses.s3.amazonaws.com/tensorflow-2.5/license.txt -o /license.txt # Install TF Binary RUN pip install --no-cache-dir -U $TF_URL # We need TF_FORCE_GPU_ALLOW_GROWTH=true to prevent TF from overusing GPU memory when loading models ENV TF_FORCE_GPU_ALLOW_GROWTH=true # install Hugging Face libraries and its dependencies RUN pip install --no-cache-dir \ transformers[sentencepiece]==${TRANSFORMERS_VERSION} \ protobuf==3.20.1 \ "sagemaker-huggingface-inference-toolkit<2" RUN HOME_DIR=/root \ && curl -o ${HOME_DIR}/oss_compliance.zip https://aws-dlinfra-utilities.s3.amazonaws.com/oss_compliance.zip \ && unzip ${HOME_DIR}/oss_compliance.zip -d ${HOME_DIR}/ \ && cp ${HOME_DIR}/oss_compliance/test/testOSSCompliance /usr/local/bin/testOSSCompliance \ && chmod +x /usr/local/bin/testOSSCompliance \ && chmod +x ${HOME_DIR}/oss_compliance/generate_oss_compliance.sh \ && ${HOME_DIR}/oss_compliance/generate_oss_compliance.sh ${HOME_DIR} ${PYTHON} \ && rm -rf ${HOME_DIR}/oss_compliance* EXPOSE 8080 8081 ENTRYPOINT ["python", "/usr/local/bin/dockerd-entrypoint.py"] CMD ["serve"]