# The tag for the base image is: 10.1-cudnn7-devel-ubuntu16.04 FROM nvidia/cuda:10.1-cudnn7-devel-ubuntu16.04 LABEL maintainer="Amazon AI" LABEL dlc_major_version="1" ARG PYTHON=python3 ARG PYTHON_VERSION=3.6.13 ARG OPEN_MPI_VERSION=4.0.1 ARG CUBLAS_VERSION=10.2.1.243-1_amd64 ARG OPEN_MPI_PATH=/home/.openmpi ARG CUDA_HOME=/usr/local/cuda # The smdebug pipeline relies for following format to perform string replace and trigger DLC pipeline for validating # the nightly builds. Therefore, while updating the smdebug version, please ensure that the format is not disturbed. ARG SMDEBUG_VERSION=1.0.7 # Python won’t try to write .pyc or .pyo files on the import of source modules # Force stdin, stdout and stderr to be totally unbuffered. Good for logging ENV PYTHONDONTWRITEBYTECODE=1 ENV PYTHONUNBUFFERED=1 ENV LD_LIBRARY_PATH="/usr/local/lib:${LD_LIBRARY_PATH}" ENV LD_LIBRARY_PATH="/opt/conda/lib:${LD_LIBRARY_PATH}" ENV PYTHONIOENCODING=UTF-8 ENV LANG=C.UTF-8 ENV LC_ALL=C.UTF-8 ENV PATH /opt/conda/bin:$PATH ENV TORCH_CUDA_ARCH_LIST="3.5 5.2 6.0 6.1 7.0+PTX" ENV TORCH_NVCC_FLAGS="-Xfatbin -compress-all" ENV HOROVOD_VERSION=0.19.5 ENV DGLBACKEND=pytorch ENV CMAKE_PREFIX_PATH="$(dirname $(which conda))/../" ENV SAGEMAKER_TRAINING_MODULE=sagemaker_pytorch_container.training:main ARG PT_TRAINING_URL=https://aws-pytorch-binaries.s3-us-west-2.amazonaws.com/r1.6.0_aws/20200727-215603/a40b1c195ba679596118514fcbeae1f422591426/gpu/torch-1.6.0-cp36-cp36m-manylinux1_x86_64.whl RUN apt-get update \ && apt-get install -y --allow-downgrades --allow-change-held-packages --no-install-recommends \ build-essential \ ca-certificates \ cmake \ cuda-command-line-tools-10-1 \ cuda-cufft-10-1 \ cuda-curand-10-1 \ cuda-cusolver-10-1 \ cuda-cusparse-10-1 \ curl \ emacs \ git \ jq \ libboost-all-dev \ libglib2.0-0 \ libgl1-mesa-glx \ libsm6 \ libxext6 \ libxrender-dev \ libgomp1 \ libibverbs-dev \ libhwloc-dev \ libnuma1 \ libnuma-dev \ vim \ wget \ unzip \ zlib1g-dev \ && apt-get remove -y cuda-cufft-dev-10-1 \ cuda-cusolver-dev-10-1 \ cuda-npp-dev-10-1 \ cuda-nvgraph-dev-10-1 \ cuda-nvjpeg-dev-10-1 \ cuda-nvrtc-dev-10-1 \ && rm -rf /var/lib/apt/lists/* RUN wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/libcublas10_${CUBLAS_VERSION}.deb \ && dpkg -i libcublas10_${CUBLAS_VERSION}.deb \ && apt-get install -f -y \ && rm libcublas10_${CUBLAS_VERSION}.deb # Upgrade NCCL from 2.4.8 to 2.7.8 RUN rm -rf /usr/lib/x86_64-linux-gnu/libnccl* \ && cd /tmp \ && git clone https://github.com/NVIDIA/nccl.git -b v2.7.8-1 \ && cd nccl \ && make -j64 src.build BUILDDIR=/usr/local CUDA_HOME=${CUDA_HOME} NVCC_GENCODE="-gencode=arch=compute_70,code=sm_70" \ && rm -rf /tmp/nccl # Set the Env Paths to reflect new NCCL ENV LD_LIBRARY_PATH="/usr/local/lib:$LD_LIBRARY_PATH" RUN wget https://www.open-mpi.org/software/ompi/v4.0/downloads/openmpi-$OPEN_MPI_VERSION.tar.gz \ && gunzip -c openmpi-$OPEN_MPI_VERSION.tar.gz | tar xf - \ && cd openmpi-$OPEN_MPI_VERSION \ && ./configure --prefix=$OPEN_MPI_PATH \ && make all install \ && cd .. \ && rm openmpi-$OPEN_MPI_VERSION.tar.gz \ && rm -rf openmpi-$OPEN_MPI_VERSION ENV PATH="$OPEN_MPI_PATH/bin:$PATH" ENV LD_LIBRARY_PATH="$OPEN_MPI_PATH/lib/:$LD_LIBRARY_PATH" RUN ompi_info --parsable --all | grep mpi_built_with_cuda_support:value \ && curl -L -o ~/miniconda.sh https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh \ && chmod +x ~/miniconda.sh \ && ~/miniconda.sh -b -p /opt/conda \ && rm ~/miniconda.sh \ && /opt/conda/bin/conda install -c conda-forge \ python=$PYTHON_VERSION \ && /opt/conda/bin/conda install -y -c anaconda \ numpy \ ipython \ mkl \ mkl-include \ cython \ typing \ future \ "pyopenssl>=17.5.0" \ && conda install -c dglteam -y dgl-cuda10.1==0.4.3 \ && /opt/conda/bin/conda clean -ya RUN conda install -c pytorch magma-cuda101==2.5.2 \ && conda install -c conda-forge \ opencv \ && conda install -y scikit-learn \ pandas \ h5py \ requests \ libgcc \ && conda clean -ya WORKDIR /opt/pytorch # Copy workaround script for incorrect hostname COPY changehostname.c / COPY start_with_right_hostname.sh /usr/local/bin/start_with_right_hostname.sh WORKDIR /root RUN /opt/conda/bin/conda config --set ssl_verify False \ && pip install --upgrade pip --trusted-host pypi.org --trusted-host files.pythonhosted.org \ && ln -s /opt/conda/bin/pip /usr/local/bin/pip3 # Uninstall torch and torchvision before installing the custom versions from an S3 bucket RUN pip install \ --no-cache-dir smdebug==${SMDEBUG_VERSION} \ "sagemaker>=2,<3" \ sagemaker-experiments==0.* \ --no-cache-dir "sagemaker-pytorch-training<3" \ --no-cache-dir fastai==1.0.59 \ "awscli<2" \ psutil \ Pillow \ scipy \ click \ ruamel-yaml \ mpi4py==3.0.3 \ cmake==3.18.2.post1 \ && pip install --no-cache-dir -U ${PT_TRAINING_URL} \ && pip uninstall -y torchvision \ && pip install --no-deps --no-cache-dir -U \ https://torchvision-build.s3.amazonaws.com/1.6.0/gpu/torchvision-0.7.0-cp36-cp36m-linux_x86_64.whl # Install Horovod RUN pip uninstall -y horovod \ && ldconfig /usr/local/cuda-10.1/targets/x86_64-linux/lib/stubs \ && HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_CUDA_HOME=/usr/local/cuda-10.1 HOROVOD_WITH_PYTORCH=1 pip install --no-cache-dir horovod==${HOROVOD_VERSION} \ && ldconfig # Install Nvidia Apex RUN git clone https://github.com/NVIDIA/apex.git \ && cd apex \ && pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./ # Configure Open MPI and configure NCCL parameters RUN mv $OPEN_MPI_PATH/bin/mpirun $OPEN_MPI_PATH/bin/mpirun.real \ && echo '#!/bin/bash' > $OPEN_MPI_PATH/bin/mpirun \ && echo 'mpirun.real --allow-run-as-root "$@"' >> $OPEN_MPI_PATH/bin/mpirun \ && chmod a+x $OPEN_MPI_PATH/bin/mpirun \ && echo "hwloc_base_binding_policy = none" >> $OPEN_MPI_PATH/etc/openmpi-mca-params.conf \ && echo "rmaps_base_mapping_policy = slot" >> $OPEN_MPI_PATH/etc/openmpi-mca-params.conf \ && echo "btl_tcp_if_exclude = lo,docker0" >> $OPEN_MPI_PATH/etc/openmpi-mca-params.conf \ && echo NCCL_DEBUG=INFO >> /etc/nccl.conf \ && echo NCCL_SOCKET_IFNAME=^docker0 >> /etc/nccl.conf # Install OpenSSH for MPI to communicate between containers, allow OpenSSH to talk to containers without asking for confirmation RUN apt-get update \ && apt-get install -y --allow-downgrades --allow-change-held-packages --no-install-recommends \ && apt-get install -y --no-install-recommends openssh-client openssh-server \ && mkdir -p /var/run/sshd \ && cat /etc/ssh/ssh_config | grep -v StrictHostKeyChecking > /etc/ssh/ssh_config.new \ && echo " StrictHostKeyChecking no" >> /etc/ssh/ssh_config.new \ && mv /etc/ssh/ssh_config.new /etc/ssh/ssh_config \ && rm -rf /var/lib/apt/lists/* WORKDIR / ADD https://raw.githubusercontent.com/aws/deep-learning-containers/master/src/deep_learning_container.py /usr/local/bin/deep_learning_container.py RUN HOME_DIR=/root \ && curl -o ${HOME_DIR}/oss_compliance.zip https://aws-dlinfra-utilities.s3.amazonaws.com/oss_compliance.zip \ && unzip ${HOME_DIR}/oss_compliance.zip -d ${HOME_DIR}/ \ && cp ${HOME_DIR}/oss_compliance/test/testOSSCompliance /usr/local/bin/testOSSCompliance \ && chmod +x /usr/local/bin/testOSSCompliance \ && chmod +x ${HOME_DIR}/oss_compliance/generate_oss_compliance.sh \ && ${HOME_DIR}/oss_compliance/generate_oss_compliance.sh ${HOME_DIR} ${PYTHON} \ && rm -rf ${HOME_DIR}/oss_compliance* RUN chmod +x /usr/local/bin/start_with_right_hostname.sh \ && chmod +x /usr/local/bin/deep_learning_container.py \ && wget -O /license.txt https://aws-dlc-licenses.s3.amazonaws.com/pytorch-1.6.0/license.txt # Starts framework ENTRYPOINT ["bash", "-m", "start_with_right_hostname.sh"] CMD ["/bin/bash"]