# The tag for the base image is: 11.0-cudnn8-devel-ubuntu16.04 FROM nvidia/cuda:11.0-cudnn8-devel-ubuntu18.04 LABEL maintainer="Amazon AI" LABEL dlc_major_version="3" ARG PYTHON=python3 ARG PYTHON_VERSION=3.6.13 ARG OPEN_MPI_VERSION=4.0.1 ARG CUBLAS_VERSION=11.2.0.252-1_amd64 ARG OPEN_MPI_PATH=/home/.openmpi ARG CUDA_HOME=/usr/local/cuda ARG CONDA_PREFIX=/opt/conda ARG METIS=metis-5.1.0 ARG RMM_VERSION=0.15.0 # The smdebug pipeline relies for following format to perform string replace and trigger DLC pipeline for validating # the nightly builds. Therefore, while updating the smdebug version, please ensure that the format is not disturbed. ARG SMDEBUG_VERSION=1.0.7 # Python won’t try to write .pyc or .pyo files on the import of source modules # Force stdin, stdout and stderr to be totally unbuffered. Good for logging ENV PYTHONDONTWRITEBYTECODE=1 ENV PYTHONUNBUFFERED=1 ENV LD_LIBRARY_PATH="/usr/local/lib:${LD_LIBRARY_PATH}" ENV LD_LIBRARY_PATH="/opt/conda/lib:${LD_LIBRARY_PATH}" ENV PYTHONIOENCODING=UTF-8 ENV LANG=C.UTF-8 ENV LC_ALL=C.UTF-8 ENV PATH /opt/conda/bin:$PATH ENV TORCH_CUDA_ARCH_LIST="3.5 3.7 5.2 6.0 6.1 7.0+PTX 8.0" ENV TORCH_NVCC_FLAGS="-Xfatbin -compress-all" ENV HOROVOD_VERSION=0.20.3 ENV DGLBACKEND=pytorch ENV CMAKE_PREFIX_PATH="$(dirname $(which conda))/../" ENV SAGEMAKER_TRAINING_MODULE=sagemaker_pytorch_container.training:main ENV MANUAL_BUILD=0 ARG PT_TRAINING_URL=https://aws-pytorch-binaries.s3-us-west-2.amazonaws.com/r1.6.0_cuda/20201205-063316/cddb1a49fc68ff0c6b06af06cb08e18cfd7dc0a2/gpu/torch-1.6.0-cp36-cp36m-manylinux1_x86_64.whl ARG PT_TORCHVISION_URL=https://torchvision-build.s3-us-west-2.amazonaws.com/1.6.0/gpu/cuda-11-0/torchvision-0.7.0a0%2B78ed10c-cp36-cp36m-manylinux1_x86_64.whl ARG SMD_MP_BINARY=https://sagemaker-distributed-model-parallel.s3.amazonaws.com/pytorch-1.6/build-artifacts/2020-12-06/smdistributed_modelparallel-1.0.0-cp36-cp36m-linux_x86_64.whl ARG SMDATAPARALLEL_BINARY=https://smdataparallel.s3.amazonaws.com/binary/pytorch/1.6.0/cu110/2021-01-14/smdistributed_dataparallel-1.0.0-cp36-cp36m-linux_x86_64.whl RUN apt-get update \ && apt-get install -y --allow-change-held-packages --no-install-recommends \ build-essential \ ca-certificates \ cmake \ cuda-command-line-tools-11-0 \ cuda-cudart-11-0 \ libcufft-dev-11-0 \ libnccl-dev=2.7.8-1+cuda11.0 \ libcurand-dev-11-0 \ libcusolver-dev-11-0 \ libcusparse-dev-11-0 \ curl \ emacs \ git \ jq \ libglib2.0-0 \ libgl1-mesa-glx \ libsm6 \ libxext6 \ libxrender-dev \ libgomp1 \ libibverbs-dev \ libhwloc-dev \ libnuma1 \ libnuma-dev \ libtool \ vim \ wget \ unzip \ zlib1g-dev \ openssl \ libssl1.1 \ # These packages need to be removed once there are stable packages available for them in CUDA 11 # && apt-get remove -y cuda-cufft-dev-10-1 \ # cuda-cusolver-dev-10-1 \ # cuda-npp-dev-10-1 \ # cuda-nvgraph-dev-10-1 \ # cuda-nvjpeg-dev-10-1 \ # cuda-nvrtc-dev-10-1 \ && rm -rf /var/lib/apt/lists/* RUN wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/libcublas-11-0_${CUBLAS_VERSION}.deb \ && dpkg -i libcublas-11-0_${CUBLAS_VERSION}.deb \ && apt-get install -f -y \ && rm libcublas-11-0_${CUBLAS_VERSION}.deb RUN wget https://www.open-mpi.org/software/ompi/v4.0/downloads/openmpi-$OPEN_MPI_VERSION.tar.gz \ && gunzip -c openmpi-$OPEN_MPI_VERSION.tar.gz | tar xf - \ && cd openmpi-$OPEN_MPI_VERSION \ && ./configure --prefix=$OPEN_MPI_PATH \ && make all install \ && cd .. \ && rm openmpi-$OPEN_MPI_VERSION.tar.gz \ && rm -rf openmpi-$OPEN_MPI_VERSION ENV PATH="$OPEN_MPI_PATH/bin:$PATH" ENV LD_LIBRARY_PATH="$OPEN_MPI_PATH/lib/:$LD_LIBRARY_PATH" RUN ompi_info --parsable --all | grep mpi_built_with_cuda_support:value \ && curl -L -o ~/miniconda.sh https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh \ && chmod +x ~/miniconda.sh \ && ~/miniconda.sh -b -p ${CONDA_PREFIX} \ && rm ~/miniconda.sh \ && ${CONDA_PREFIX}/bin/conda install -c conda-forge \ python=$PYTHON_VERSION \ && ${CONDA_PREFIX}/bin/conda install -y -c anaconda \ numpy \ ipython \ mkl \ mkl-include \ cython \ typing \ future \ "pyopenssl>=17.5.0" \ && conda install -y -c dglteam dgl-cuda11.0 \ && ${CONDA_PREFIX}/bin/conda clean -ya RUN conda install -c pytorch magma-cuda110==2.5.2 \ && conda install -c conda-forge \ opencv \ && conda install -y scikit-learn \ pandas \ h5py \ requests \ libgcc \ && conda clean -ya # Install libboost from source. This package is needed for smdataparallel functionality [for networking asynchronous IO]. RUN wget --quiet https://dl.bintray.com/boostorg/release/1.73.0/source/boost_1_73_0.tar.gz \ && tar -xzf boost_1_73_0.tar.gz \ && cd boost_1_73_0 \ && ./bootstrap.sh \ && ./b2 threading=multi --prefix=${CONDA_PREFIX} -j 64 cxxflags=-fPIC cflags=-fPIC install || true \ && cd .. \ && rm -rf boost_1_73_0.tar.gz \ && rm -rf boost_1_73_0 WORKDIR /opt/pytorch # Copy workaround script for incorrect hostname COPY changehostname.c / COPY start_with_right_hostname.sh /usr/local/bin/start_with_right_hostname.sh WORKDIR /root RUN ${CONDA_PREFIX}/bin/conda config --set ssl_verify False \ && pip install --upgrade pip --trusted-host pypi.org --trusted-host files.pythonhosted.org \ && ln -s ${CONDA_PREFIX}/bin/pip /usr/local/bin/pip3 # Uninstall torch and torchvision before installing the custom versions from an S3 bucket RUN pip install --no-cache-dir -U \ smdebug==${SMDEBUG_VERSION} \ smclarify \ "sagemaker>=2,<3" \ sagemaker-experiments==0.* \ sagemaker-pytorch-training \ --no-cache-dir fastai==1.0.61 \ "awscli<2" \ psutil \ Pillow \ scipy \ pybind11 \ click \ ruamel-yaml \ mpi4py==3.0.3 \ cmake==3.18.2.post1 \ torchnet \ "cryptography>3.2" \ && pip install --no-cache-dir -U ${PT_TRAINING_URL} \ && pip uninstall -y torchvision \ && pip install --no-deps --no-cache-dir -U ${PT_TORCHVISION_URL} # install metis RUN wget -nv http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/${METIS}.tar.gz \ && gunzip -f ${METIS}.tar.gz \ && tar -xvf ${METIS}.tar \ && cd ${METIS} \ && apt-get update \ && apt-get install -y build-essential \ && apt-get install -y cmake \ && make config shared=1 \ && make install \ && cd .. \ && rm -rf ${METIS}.tar* \ && rm -rf ${METIS} \ && rm -rf /var/lib/apt/lists/* \ && apt-get clean # Install RAPIDSMemoryManager. # Requires cmake>=3.14. RUN wget -nv https://github.com/rapidsai/rmm/archive/v${RMM_VERSION}.tar.gz \ && tar -xvf v${RMM_VERSION}.tar.gz \ && cd rmm-${RMM_VERSION} \ && INSTALL_PREFIX=/usr/local ./build.sh librmm \ && cd .. \ && rm -rf v${RMM_VERSION}.tar* \ && rm -rf rmm-${RMM_VERSION} # Install Horovod RUN pip uninstall -y horovod \ && ldconfig /usr/local/cuda-11.0/targets/x86_64-linux/lib/stubs \ && HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_CUDA_HOME=/usr/local/cuda-11.0 HOROVOD_WITH_PYTORCH=1 pip install --no-cache-dir horovod==${HOROVOD_VERSION} \ && ldconfig # Install Nvidia Apex RUN git clone https://github.com/NVIDIA/apex.git \ && cd apex \ && pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./ # Configure Open MPI and configure NCCL parameters RUN mv $OPEN_MPI_PATH/bin/mpirun $OPEN_MPI_PATH/bin/mpirun.real \ && echo '#!/bin/bash' > $OPEN_MPI_PATH/bin/mpirun \ && echo 'mpirun.real --allow-run-as-root "$@"' >> $OPEN_MPI_PATH/bin/mpirun \ && chmod a+x $OPEN_MPI_PATH/bin/mpirun \ && echo "hwloc_base_binding_policy = none" >> $OPEN_MPI_PATH/etc/openmpi-mca-params.conf \ && echo "rmaps_base_mapping_policy = slot" >> $OPEN_MPI_PATH/etc/openmpi-mca-params.conf \ && echo NCCL_DEBUG=INFO >> /etc/nccl.conf \ && echo NCCL_SOCKET_IFNAME=^docker0 >> /etc/nccl.conf # Install OpenSSH for MPI to communicate between containers, allow OpenSSH to talk to containers without asking for confirmation RUN apt-get update \ && apt-get install -y --allow-downgrades --allow-change-held-packages --no-install-recommends \ && apt-get install -y --no-install-recommends openssh-client openssh-server \ && mkdir -p /var/run/sshd \ && cat /etc/ssh/ssh_config | grep -v StrictHostKeyChecking > /etc/ssh/ssh_config.new \ && echo " StrictHostKeyChecking no" >> /etc/ssh/ssh_config.new \ && mv /etc/ssh/ssh_config.new /etc/ssh/ssh_config \ && rm -rf /var/lib/apt/lists/* # Configure OpenSSH so that nodes can communicate with each other RUN mkdir -p /var/run/sshd && \ sed 's@session\s*required\s*pam_loginuid.so@session optional pam_loginuid.so@g' -i /etc/pam.d/sshd RUN rm -rf /root/.ssh/ && \ mkdir -p /root/.ssh/ && \ ssh-keygen -q -t rsa -N '' -f /root/.ssh/id_rsa && \ cp /root/.ssh/id_rsa.pub /root/.ssh/authorized_keys \ && printf "Host *\n StrictHostKeyChecking no\n" >> /root/.ssh/config # Install SM Distributed Modelparallel binary RUN pip install --no-cache-dir -U ${SMD_MP_BINARY} # Install SM Distributed DataParallel binary RUN SMDATAPARALLEL_PT=1 pip install --no-cache-dir ${SMDATAPARALLEL_BINARY} ENV LD_LIBRARY_PATH="/opt/conda/lib/python3.6/site-packages/smdistributed/dataparallel/lib:$LD_LIBRARY_PATH" WORKDIR / ADD https://raw.githubusercontent.com/aws/deep-learning-containers/master/src/deep_learning_container.py /usr/local/bin/deep_learning_container.py RUN HOME_DIR=/root \ && curl -o ${HOME_DIR}/oss_compliance.zip https://aws-dlinfra-utilities.s3.amazonaws.com/oss_compliance.zip \ && unzip ${HOME_DIR}/oss_compliance.zip -d ${HOME_DIR}/ \ && cp ${HOME_DIR}/oss_compliance/test/testOSSCompliance /usr/local/bin/testOSSCompliance \ && chmod +x /usr/local/bin/testOSSCompliance \ && chmod +x ${HOME_DIR}/oss_compliance/generate_oss_compliance.sh \ && ${HOME_DIR}/oss_compliance/generate_oss_compliance.sh ${HOME_DIR} ${PYTHON} \ && rm -rf ${HOME_DIR}/oss_compliance* RUN chmod +x /usr/local/bin/start_with_right_hostname.sh \ && chmod +x /usr/local/bin/deep_learning_container.py \ && wget -O /license.txt https://aws-dlc-licenses.s3.amazonaws.com/pytorch-1.6.0/license.txt # Starts framework ENTRYPOINT ["bash", "-m", "start_with_right_hostname.sh"] CMD ["/bin/bash"]