FROM ubuntu:18.04 LABEL maintainer="Amazon AI" ARG OPENSSL_VERSION=1.1.1k RUN apt-get update && apt-get install -y --no-install-recommends \ ca-certificates \ curl \ emacs \ git \ wget \ vim \ build-essential \ && rm -rf /var/lib/apt/lists/* RUN wget -c https://www.openssl.org/source/openssl-${OPENSSL_VERSION}.tar.gz \ && apt-get update \ && apt remove -y --purge openssl \ && rm -rf /usr/include/openssl \ && apt-get install -y \ ca-certificates \ && tar -xzvf openssl-${OPENSSL_VERSION}.tar.gz \ && cd openssl-${OPENSSL_VERSION} \ && ./config && make && make test \ && make install \ && ldconfig \ && cd .. && rm -rf openssl-* # when we remove previous openssl, the ca-certificates pkgs and its symlinks gets deleted # causing sslcertverificationerror the below steps are to fix that RUN ln -s /etc/ssl/certs/*.* /usr/local/ssl/certs/ # See http://bugs.python.org/issue19846 ENV LANG C.UTF-8 # Add arguments to achieve the version, python and url # PYTHON=python for 2.7 # PYTHON=python3 for 3.5, 3.6 is not available directly on 16.04 ARG PYTHON=python # user python-pip or python3-pip ARG PYTHON_PIP=python-pip # PIP=pip for 2.7 # PIP=pip3 for 3.5, 3.6 is not available directly on 16.04 ARG PIP=pip # Python won’t try to write .pyc or .pyo files on the import of source modules ENV PYTHONDONTWRITEBYTECODE=1 \ PYTHONUNBUFFERED=1 RUN apt-get update && apt-get install -y --no-install-recommends \ ${PYTHON} \ ${PYTHON_PIP} RUN ${PIP} --no-cache-dir install --upgrade \ pip \ setuptools # Some TF tools expect a "python" binary RUN ln -s $(which ${PYTHON}) /usr/local/bin/python RUN curl https://tensorflow-aws.s3-us-west-2.amazonaws.com/MKL-Libraries/libiomp5.so -o /usr/local/lib/libiomp5.so RUN curl https://tensorflow-aws.s3-us-west-2.amazonaws.com/MKL-Libraries/libmklml_intel.so -o /usr/local/lib/libmklml_intel.so ENV LD_LIBRARY_PATH '/usr/local/lib:$LD_LIBRARY_PATH' RUN curl https://tensorflow-aws.s3-us-west-2.amazonaws.com/2.0.2/Serving/CPU-WITH-MKL/tensorflow_model_server -o /usr/bin/tensorflow_model_server \ && chmod 555 /usr/bin/tensorflow_model_server RUN ${PIP} install -U --no-cache-dir \ PyYAML==5.3.1 \ docutils==0.15.2 \ "awscli<2" \ requests==2.22.0 # Expose ports # gRPC EXPOSE 8500 # REST EXPOSE 8501 # Set where models should be stored in the container ENV MODEL_BASE_PATH=/models RUN mkdir -p ${MODEL_BASE_PATH} # The only required piece is the model name in order to differentiate endpoints ENV MODEL_NAME=model # Create a script that runs the model server so we can use environment variables # while also passing in arguments from the docker command line RUN echo '#!/bin/bash \n\n\ tensorflow_model_server --port=8500 --rest_api_port=8501 \ --model_name=${MODEL_NAME} --model_base_path=${MODEL_BASE_PATH}/${MODEL_NAME} \ "$@"' > /usr/bin/tf_serving_entrypoint.sh \ && chmod +x /usr/bin/tf_serving_entrypoint.sh ADD https://raw.githubusercontent.com/aws/deep-learning-containers/master/src/deep_learning_container.py /usr/local/bin/deep_learning_container.py RUN chmod +x /usr/local/bin/deep_learning_container.py RUN curl https://aws-dlc-licenses.s3.amazonaws.com/tensorflow-2.0/license.txt -o /license.txt CMD ["/usr/bin/tf_serving_entrypoint.sh"]