# Copyright 2017 Uber Technologies, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== #!/usr/bin/env python import argparse import tensorflow as tf import horovod.tensorflow as hvd import os parser = argparse.ArgumentParser( description="TensorFlow Synthetic Benchmark", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument("--no-cuda", action="store_true", default=False, help="disables CUDA training") args = parser.parse_args() args.cuda = not args.no_cuda layers = tf.contrib.layers learn = tf.contrib.learn tf.logging.set_verbosity(tf.logging.INFO) def conv_model(feature, target, mode): """2-layer convolution model.""" # Convert the target to a one-hot tensor of shape (batch_size, 10) and # with a on-value of 1 for each one-hot vector of length 10. target = tf.one_hot(tf.cast(target, tf.int32), 10, 1, 0) # Reshape feature to 4d tensor with 2nd and 3rd dimensions being # image width and height final dimension being the number of color channels. feature = tf.reshape(feature, [-1, 28, 28, 1]) # First conv layer will compute 32 features for each 5x5 patch with tf.variable_scope("conv_layer1"): h_conv1 = layers.conv2d(feature, 32, kernel_size=[5, 5], activation_fn=tf.nn.relu) h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") # Second conv layer will compute 64 features for each 5x5 patch. with tf.variable_scope("conv_layer2"): h_conv2 = layers.conv2d(h_pool1, 64, kernel_size=[5, 5], activation_fn=tf.nn.relu) h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") # reshape tensor into a batch of vectors h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) # Densely connected layer with 1024 neurons. h_fc1 = layers.dropout( layers.fully_connected(h_pool2_flat, 1024, activation_fn=tf.nn.relu), keep_prob=0.5, is_training=mode == tf.contrib.learn.ModeKeys.TRAIN, ) # Compute logits (1 per class) and compute loss. logits = layers.fully_connected(h_fc1, 10, activation_fn=None) loss = tf.losses.softmax_cross_entropy(target, logits) return tf.argmax(logits, 1), loss def main(_): # Horovod: initialize Horovod. hvd.init() # Download and load MNIST dataset. mnist = learn.datasets.mnist.read_data_sets("MNIST-data-%d" % hvd.rank()) # Build model... with tf.name_scope("input"): image = tf.placeholder(tf.float32, [None, 784], name="image") label = tf.placeholder(tf.float32, [None], name="label") predict, loss = conv_model(image, label, tf.contrib.learn.ModeKeys.TRAIN) # Horovod: adjust learning rate based on number of GPUs. opt = tf.train.RMSPropOptimizer(0.001 * hvd.size()) # Horovod: add Horovod Distributed Optimizer. opt = hvd.DistributedOptimizer(opt) global_step = tf.contrib.framework.get_or_create_global_step() train_op = opt.minimize(loss, global_step=global_step) hooks = [ # Horovod: BroadcastGlobalVariablesHook broadcasts initial variable states # from rank 0 to all other processes. This is necessary to ensure consistent # initialization of all workers when training is started with random weights # or restored from a checkpoint. hvd.BroadcastGlobalVariablesHook(0), # Horovod: adjust number of steps based on number of GPUs. tf.train.StopAtStepHook(last_step=100 // hvd.size()), tf.train.LoggingTensorHook(tensors={"step": global_step, "loss": loss}, every_n_iter=10), ] # Horovod: pin GPU to be used to process local rank (one GPU per process) config = tf.ConfigProto() if args.cuda: config.gpu_options.allow_growth = True config.gpu_options.visible_device_list = str(hvd.local_rank()) else: os.environ["CUDA_VISIBLE_DEVICES"] = "-1" config.gpu_options.allow_growth = False config.gpu_options.visible_device_list = "" # Horovod: save checkpoints only on worker 0 to prevent other workers from # corrupting them. checkpoint_dir = "./checkpoints" if hvd.rank() == 0 else None # The MonitoredTrainingSession takes care of session initialization, # restoring from a checkpoint, saving to a checkpoint, and closing when done # or an error occurs. with tf.train.MonitoredTrainingSession( checkpoint_dir=checkpoint_dir, hooks=hooks, config=config ) as mon_sess: while not mon_sess.should_stop(): # Run a training step synchronously. image_, label_ = mnist.train.next_batch(100) mon_sess.run(train_op, feed_dict={image: image_, label: label_}) if __name__ == "__main__": tf.app.run()