import numpy as np import tensorflow as tf from tensorflow import keras def train(): print("TF version: {}".format(tf.__version__)) model = keras.Sequential( [ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation="relu"), keras.layers.Dense(10), ] ) model.compile( optimizer="adam", loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=["accuracy"], ) callbacks = [tf.keras.callbacks.TensorBoard(log_dir="logs", profile_batch=1)] X_train = np.random.rand(1, 28, 28) Y_train = np.random.rand( 1, ) model.fit(X_train, Y_train, epochs=10, callbacks=callbacks) if __name__ == "__main__": train()