# Copyright 2018-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from __future__ import absolute_import import os import pytest from sagemaker import utils from .timeout import timeout from ..local.ag_tools import AutoGluon from ..... import invoke_sm_helper_function from ...integration import RESOURCE_PATH, DEFAULT_TIMEOUT @pytest.mark.model("autogluon") @pytest.mark.integration("smexperiments") @pytest.mark.skip_test_in_region def test_training(ecr_image, sagemaker_regions, instance_type, framework_version): invoke_sm_helper_function( ecr_image, sagemaker_regions, _test_training_function, instance_type, framework_version ) def _test_training_function(ecr_image, sagemaker_session, instance_type, framework_version): ag = AutoGluon( entry_point=os.path.join(RESOURCE_PATH, "scripts", "train_tab.py"), role="SageMakerRole", instance_count=1, instance_type=instance_type, sagemaker_session=sagemaker_session, image_uri=ecr_image, framework_version=framework_version, ) ag = _disable_sm_profiler(sagemaker_session.boto_region_name, ag) with timeout(minutes=DEFAULT_TIMEOUT): device = "cpu" data_path = os.path.join(RESOURCE_PATH, "data") s3_prefix = "autogluon_sm/{}".format(utils.sagemaker_timestamp()) train_input = ag.sagemaker_session.upload_data( path=os.path.join(data_path, "training", f"train.{device}.csv"), key_prefix=s3_prefix ) eval_input = ag.sagemaker_session.upload_data( path=os.path.join(data_path, "evaluation", f"eval.{device}.csv"), key_prefix=s3_prefix ) config_input = ag.sagemaker_session.upload_data( path=os.path.join(data_path, "config", f"config.{device}.yaml"), key_prefix=s3_prefix ) job_name = utils.unique_name_from_base("test-autogluon-image") ag.fit( {"config": config_input, "train": train_input, "test": eval_input}, job_name=job_name ) def _disable_sm_profiler(region, estimator): """Disable SMProfiler feature for China regions""" if region in ("cn-north-1", "cn-northwest-1"): estimator.disable_profiler = True return estimator