# Copyright 2019-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from __future__ import absolute_import import os import pytest import requests from sagemaker.mxnet.model import MXNetModel from ...integration.local import local_mode_utils from ...integration import RESOURCE_PATH DEFAULT_HANDLER_PATH = os.path.join(RESOURCE_PATH, "default_handlers") MODEL_PATH = os.path.join(DEFAULT_HANDLER_PATH, "model.tar.gz") SCRIPT_PATH = os.path.join(DEFAULT_HANDLER_PATH, "model", "code", "empty_module.py") @pytest.fixture(scope="module") def predictor(docker_image, sagemaker_local_session, local_instance_type, framework_version): model = MXNetModel( "file://{}".format(MODEL_PATH), "SageMakerRole", SCRIPT_PATH, image_uri=docker_image, framework_version=framework_version, sagemaker_session=sagemaker_local_session, ) with local_mode_utils.lock(): try: predictor = model.deploy(1, local_instance_type) yield predictor finally: predictor.delete_endpoint() @pytest.mark.model("linear_regression") def test_default_model_fn(predictor): input = [[1, 2]] output = predictor.predict(input) assert [[4.9999918937683105]] == output @pytest.mark.model("linear_regression") def test_default_model_fn_content_type(predictor): r = requests.post("http://localhost:8080/invocations", json=[[1, 2]]) assert "application/json" == r.headers["Content-Type"] assert [[4.9999918937683105]] == r.json()