# Copyright 2019-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from __future__ import absolute_import import json import os import pytest from sagemaker.mxnet.model import MXNetModel from ...integration.local import local_mode_utils from ...integration import RESOURCE_PATH GLUON_PATH = os.path.join(RESOURCE_PATH, "gluon_hosting") MODEL_PATH = os.path.join(GLUON_PATH, "model", "model.tar.gz") SCRIPT_PATH = os.path.join(GLUON_PATH, "model", "code", "gluon.py") # The image should support serving Gluon-created models. @pytest.mark.integration("gluon") @pytest.mark.model("mnist") def test_gluon_hosting( docker_image, sagemaker_local_session, local_instance_type, framework_version ): model = MXNetModel( "file://{}".format(MODEL_PATH), "SageMakerRole", SCRIPT_PATH, image_uri=docker_image, framework_version=framework_version, sagemaker_session=sagemaker_local_session, ) with open(os.path.join(RESOURCE_PATH, "mnist", "images", "04.json"), "r") as f: input = json.load(f) with local_mode_utils.lock(): try: predictor = model.deploy(1, local_instance_type) output = predictor.predict(input) assert [4.0] == output finally: predictor.delete_endpoint()