# Copyright 2019-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from __future__ import absolute_import import os import pytest from sagemaker.mxnet.model import MXNetModel from sagemaker.deserializers import StringDeserializer from ...integration.local import local_mode_utils from ...integration import RESOURCE_PATH HOSTING_RESOURCE_PATH = os.path.join(RESOURCE_PATH, "dummy_hosting") MODEL_PATH = os.path.join(HOSTING_RESOURCE_PATH, "model.tar.gz") SCRIPT_PATH = os.path.join(HOSTING_RESOURCE_PATH, "code", "dummy_hosting_module.py") # The image should use the model_fn and transform_fn defined # in the user-provided script when serving. @pytest.mark.integration("hosting") @pytest.mark.model("dummy_model") def test_hosting(docker_image, sagemaker_local_session, local_instance_type, framework_version): model = MXNetModel( model_data="file://{}".format(MODEL_PATH), image_uri=docker_image, role="SageMakerRole", entry_point=SCRIPT_PATH, framework_version=framework_version, sagemaker_session=sagemaker_local_session, ) with local_mode_utils.lock(): try: predictor = model.deploy(1, local_instance_type, deserializer=StringDeserializer()) input = "some data" output = predictor.predict(input) assert '"' + input + '"' == output finally: predictor.delete_endpoint()