# Copyright 2019-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from __future__ import absolute_import import os import numpy from sagemaker.mxnet import MXNetModel import pytest from ...integration.local import local_mode_utils from ...integration import RESOURCE_PATH ONNX_PATH = os.path.join(RESOURCE_PATH, "onnx") MODEL_PATH = os.path.join(ONNX_PATH, "onnx_model") MODEL_FILE = os.path.join(MODEL_PATH, "model.tar.gz") SCRIPT_PATH = os.path.join(MODEL_PATH, "code", "onnx_import.py") @pytest.mark.integration("onnx") @pytest.mark.model("onnx_model") def test_onnx_import(docker_image, sagemaker_local_session, local_instance_type, framework_version): model = MXNetModel( "file://{}".format(MODEL_FILE), "SageMakerRole", SCRIPT_PATH, image_uri=docker_image, framework_version=framework_version, sagemaker_session=sagemaker_local_session, ) input = numpy.zeros(shape=(1, 1, 28, 28)) with local_mode_utils.lock(): try: predictor = model.deploy(1, local_instance_type) output = predictor.predict(input) finally: predictor.delete_endpoint() # Check that there is a probability for each possible class in the prediction assert len(output[0]) == 10