# Copyright 2019-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from __future__ import absolute_import import json import os from urllib.parse import urlparse import pytest from sagemaker import utils from sagemaker.mxnet.model import MXNetModel from ..... import invoke_sm_helper_function from ...integration import RESOURCE_PATH from ...integration.sagemaker import timeout SCRIPT_PATH = os.path.join(RESOURCE_PATH, "default_handlers", "model", "code", "empty_module.py") MNIST_PATH = os.path.join(RESOURCE_PATH, "mnist") MODEL_PATH = os.path.join(MNIST_PATH, "model", "model.tar.gz") DATA_FILE = "07.csv" DATA_PATH = os.path.join(MNIST_PATH, "images", DATA_FILE) @pytest.mark.skip("Known issue: https://github.com/aws/deep-learning-containers/issues/586") @pytest.mark.integration("batch_transform") @pytest.mark.model("mnist") def test_batch_transform( ecr_image, sagemaker_regions, instance_type, framework_version, skip_neuron_containers ): invoke_sm_helper_function( ecr_image, sagemaker_regions, _test_batch_transform_function, instance_type, framework_version, ) def _test_batch_transform_function(ecr_image, sagemaker_session, instance_type, framework_version): s3_prefix = "mxnet-serving/mnist" model_data = sagemaker_session.upload_data(path=MODEL_PATH, key_prefix=s3_prefix) model = MXNetModel( model_data, "SageMakerRole", SCRIPT_PATH, image_uri=ecr_image, framework_version=framework_version, sagemaker_session=sagemaker_session, ) transformer = model.transformer(1, instance_type) with timeout.timeout_and_delete_model_with_transformer( transformer, sagemaker_session, minutes=20 ): input_data = sagemaker_session.upload_data(path=DATA_PATH, key_prefix=s3_prefix) job_name = utils.unique_name_from_base("test-mxnet-serving-batch") transformer.transform(input_data, content_type="text/csv", job_name=job_name) transformer.wait() prediction = _transform_result(sagemaker_session.boto_session, transformer.output_path) assert prediction == 7 def _transform_result(boto_session, output_path): s3 = boto_session.resource("s3", region_name=boto_session.region_name) parsed_url = urlparse(output_path) bucket_name = parsed_url.netloc prefix = parsed_url.path[1:] output_obj = s3.Object(bucket_name, "{}/{}.out".format(prefix, DATA_FILE)) output = output_obj.get()["Body"].read().decode("utf-8") probabilities = json.loads(output)[0] return probabilities.index(max(probabilities))