# Copyright 2019-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from __future__ import absolute_import import os import pytest from sagemaker import utils from sagemaker.mxnet import MXNetModel from test.test_utils import get_framework_and_version_from_tag from ..... import invoke_sm_helper_function from ...integration import EI_SUPPORTED_REGIONS, RESOURCE_PATH from ...integration.sagemaker.timeout import timeout_and_delete_endpoint_by_name DEFAULT_HANDLER_PATH = os.path.join(RESOURCE_PATH, "default_handlers") MODEL_PATH = os.path.join(DEFAULT_HANDLER_PATH, "model.tar.gz") DEFAULT_SCRIPT_PATH = os.path.join(DEFAULT_HANDLER_PATH, "model", "code", "eia_module.py") @pytest.fixture(autouse=True) def skip_if_no_accelerator(accelerator_type): if accelerator_type is None: pytest.skip("Skipping because accelerator type was not provided") @pytest.fixture(autouse=True) def skip_if_non_supported_ei_region(region): if region not in EI_SUPPORTED_REGIONS: pytest.skip("EI is not supported in {}".format(region)) @pytest.mark.processor("eia") @pytest.mark.integration("elastic_inference") @pytest.mark.model("linear_regression") @pytest.mark.skip_if_non_supported_ei_region() @pytest.mark.skip_if_no_accelerator() def test_elastic_inference( ecr_image, sagemaker_regions, instance_type, accelerator_type, framework_version, skip_neuron_containers, ): invoke_sm_helper_function( ecr_image, sagemaker_regions, _test_elastic_inference_function, instance_type, accelerator_type, framework_version, ) def _test_elastic_inference_function( ecr_image, sagemaker_session, instance_type, accelerator_type, framework_version ): entry_point = DEFAULT_SCRIPT_PATH image_framework, image_framework_version = get_framework_and_version_from_tag(ecr_image) if image_framework_version == "1.5.1": entry_point = os.path.join(DEFAULT_HANDLER_PATH, "model", "code", "empty_module.py") endpoint_name = utils.unique_name_from_base("test-mxnet-ei") with timeout_and_delete_endpoint_by_name( endpoint_name=endpoint_name, sagemaker_session=sagemaker_session, minutes=20 ): prefix = "mxnet-serving/default-handlers" model_data = sagemaker_session.upload_data(path=MODEL_PATH, key_prefix=prefix) model = MXNetModel( model_data=model_data, entry_point=entry_point, role="SageMakerRole", image_uri=ecr_image, framework_version=framework_version, sagemaker_session=sagemaker_session, ) predictor = model.deploy( initial_instance_count=1, instance_type=instance_type, accelerator_type=accelerator_type, endpoint_name=endpoint_name, ) output = predictor.predict([[1, 2]]) assert [[4.9999918937683105]] == output