# Copyright 2019-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from __future__ import absolute_import import os import tempfile import pytest from sagemaker import utils from sagemaker.mxnet.model import MXNetModel from ..... import invoke_sm_helper_function from ...integration import RESOURCE_PATH from ...integration.sagemaker import timeout GLUONNLP_PATH = os.path.join(RESOURCE_PATH, "gluonnlp") SCRIPT_PATH = os.path.join(GLUONNLP_PATH, "bert.py") @pytest.mark.integration("gluonnlp") @pytest.mark.model("bert_sst") @pytest.mark.skip_py2_containers @pytest.mark.skip_eia_containers def test_gluonnlp( ecr_image, sagemaker_regions, instance_type, framework_version, skip_neuron_containers ): invoke_sm_helper_function( ecr_image, sagemaker_regions, _test_gluonnlp_function, instance_type, framework_version ) def _test_gluonnlp_function(ecr_image, sagemaker_session, instance_type, framework_version): import urllib.request tmpdir = tempfile.mkdtemp() tmpfile = os.path.join(tmpdir, "bert_sst.tar.gz") urllib.request.urlretrieve( "https://aws-dlc-sample-models.s3.amazonaws.com/bert_sst/bert_sst.tar.gz", tmpfile ) prefix = "gluonnlp-serving/default-handlers" model_data = sagemaker_session.upload_data(path=tmpfile, key_prefix=prefix) model = MXNetModel( model_data, "SageMakerRole", SCRIPT_PATH, image_uri=ecr_image, py_version="py3", framework_version=framework_version, sagemaker_session=sagemaker_session, ) endpoint_name = utils.unique_name_from_base("test-mxnet-gluonnlp") with timeout.timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session): predictor = model.deploy(1, instance_type, endpoint_name=endpoint_name) output = predictor.predict(["Positive sentiment", "Negative sentiment"]) assert [1, 0] == output