# Copyright 2018-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from __future__ import absolute_import import os import pytest from sagemaker import utils from sagemaker.mxnet.estimator import MXNet from ..... import invoke_sm_helper_function from ...integration import RESOURCE_PATH from .timeout import timeout DATA_PATH = os.path.join(RESOURCE_PATH, "mnist") SCRIPT_PATH = os.path.join(DATA_PATH, "mnist_gluon_basic_hook_demo.py") @pytest.mark.usefixtures("feature_smdebug_present") @pytest.mark.integration("smdebug") @pytest.mark.model("mnist") @pytest.mark.skip_py2_containers def test_training(ecr_image, sagemaker_regions, instance_type, instance_count, framework_version): invoke_sm_helper_function( ecr_image, sagemaker_regions, _test_training, instance_type, instance_count, framework_version, ) def _test_training(ecr_image, sagemaker_session, instance_type, instance_count, framework_version): hyperparameters = { "random_seed": True, "num_steps": 50, "smdebug_path": "/tmp/ml/output/tensors", "epochs": 1, } mx = MXNet( entry_point=SCRIPT_PATH, role="SageMakerRole", instance_count=instance_count, instance_type=instance_type, sagemaker_session=sagemaker_session, image_uri=ecr_image, framework_version=framework_version, hyperparameters=hyperparameters, ) with timeout(minutes=15): prefix = "mxnet_mnist_gluon_basic_hook_demo/{}".format(utils.sagemaker_timestamp()) train_input = sagemaker_session.upload_data( path=os.path.join(DATA_PATH, "train"), key_prefix=prefix + "/train" ) test_input = sagemaker_session.upload_data( path=os.path.join(DATA_PATH, "test"), key_prefix=prefix + "/test" ) job_name = utils.unique_name_from_base("test-mxnet-image") mx.fit({"train": train_input, "test": test_input}, job_name=job_name)