# Copyright 2019-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from __future__ import absolute_import import os import pytest from sagemaker import utils from sagemaker.mxnet.estimator import MXNet from ..... import invoke_sm_helper_function from sagemaker.tuner import ContinuousParameter, HyperparameterTuner from ...integration import RESOURCE_PATH from .timeout import timeout DATA_PATH = os.path.join(RESOURCE_PATH, "mnist") SCRIPT_PATH = os.path.join(DATA_PATH, "mnist.py") @pytest.mark.integration("hpo") @pytest.mark.model("mnist") def test_tuning(ecr_image, sagemaker_regions, instance_type, framework_version): invoke_sm_helper_function( ecr_image, sagemaker_regions, _test_tuning, instance_type, framework_version ) def _test_tuning(ecr_image, sagemaker_session, instance_type, framework_version): mx = MXNet( entry_point=SCRIPT_PATH, role="SageMakerRole", instance_count=1, instance_type=instance_type, sagemaker_session=sagemaker_session, image_uri=ecr_image, framework_version=framework_version, hyperparameters={"epochs": 1}, ) hyperparameter_ranges = {"learning-rate": ContinuousParameter(0.01, 0.2)} objective_metric_name = "Validation-accuracy" metric_definitions = [ {"Name": "Validation-accuracy", "Regex": "Validation-accuracy=([0-9\\.]+)"} ] tuner = HyperparameterTuner( mx, objective_metric_name, hyperparameter_ranges, metric_definitions, max_jobs=2, max_parallel_jobs=2, ) with timeout(minutes=20): prefix = "mxnet_mnist/{}".format(utils.sagemaker_timestamp()) train_input = sagemaker_session.upload_data( path=os.path.join(DATA_PATH, "train"), key_prefix=prefix + "/train" ) test_input = sagemaker_session.upload_data( path=os.path.join(DATA_PATH, "test"), key_prefix=prefix + "/test" ) job_name = utils.unique_name_from_base("test-mxnet-image", max_length=32) tuner.fit({"train": train_input, "test": test_input}, job_name=job_name) tuner.wait()