#!/usr/bin/env python # coding: utf-8 """GCN using DGL nn package References: - Semi-Supervised Classification with Graph Convolutional Networks - Paper: https://arxiv.org/abs/1609.02907 - Code: https://github.com/tkipf/gcn """ import os import time import argparse import numpy as np import collections import mxnet as mx from mxnet import gluon from dgl import DGLGraph from dgl.nn.mxnet import GraphConv from dgl.data import register_data_args, load_data class GCN(gluon.Block): def __init__(self, g, in_feats, n_hidden, n_classes, n_layers, activation, dropout): super(GCN, self).__init__() self.g = g self.layers = gluon.nn.Sequential() # input layer self.layers.add(GraphConv(in_feats, n_hidden, activation=activation)) # hidden layers for i in range(n_layers - 1): self.layers.add(GraphConv(n_hidden, n_hidden, activation=activation)) # output layer self.layers.add(GraphConv(n_hidden, n_classes)) self.dropout = gluon.nn.Dropout(rate=dropout) def forward(self, features): h = features for i, layer in enumerate(self.layers): if i != 0: h = self.dropout(h) h = layer(self.g, h) return h def evaluate(model, features, labels, mask): pred = model(features).argmax(axis=1) accuracy = ((pred == labels) * mask).sum() / mask.sum().asscalar() return accuracy.asscalar() def main(args): # load and preprocess dataset data = load_data(args) features = mx.nd.array(data.features) labels = mx.nd.array(data.labels) train_mask = mx.nd.array(data.train_mask) val_mask = mx.nd.array(data.val_mask) test_mask = mx.nd.array(data.test_mask) in_feats = features.shape[1] n_classes = data.num_labels n_edges = data.graph.number_of_edges() print( """----Data statistics------' #Edges %d #Classes %d #Train samples %d #Val samples %d #Test samples %d""" % ( n_edges, n_classes, train_mask.sum().asscalar(), val_mask.sum().asscalar(), test_mask.sum().asscalar(), ) ) if args.gpu < 0: cuda = False ctx = mx.cpu(0) else: cuda = True ctx = mx.gpu(args.gpu) features = features.as_in_context(ctx) labels = labels.as_in_context(ctx) train_mask = train_mask.as_in_context(ctx) val_mask = val_mask.as_in_context(ctx) test_mask = test_mask.as_in_context(ctx) # create GCN model g = data.graph if args.self_loop: g.remove_edges_from(g.selfloop_edges()) g.add_edges_from(zip(g.nodes(), g.nodes())) g = DGLGraph(g) # normalization degs = g.in_degrees().astype("float32") norm = mx.nd.power(degs, -0.5) if cuda: norm = norm.as_in_context(ctx) g.ndata["norm"] = mx.nd.expand_dims(norm, 1) model = GCN(g, in_feats, args.n_hidden, n_classes, args.n_layers, mx.nd.relu, args.dropout) model.initialize(ctx=ctx) n_train_samples = train_mask.sum().asscalar() loss_fcn = gluon.loss.SoftmaxCELoss() # use optimizer print(model.collect_params()) trainer = gluon.Trainer( model.collect_params(), "adam", {"learning_rate": args.lr, "wd": args.weight_decay} ) # initialize graph dur = [] for epoch in range(args.n_epochs): if epoch >= 3: t0 = time.time() # forward with mx.autograd.record(): pred = model(features) loss = loss_fcn(pred, labels, mx.nd.expand_dims(train_mask, 1)) loss = loss.sum() / n_train_samples loss.backward() trainer.step(batch_size=1) if epoch >= 3: loss.asscalar() dur.append(time.time() - t0) acc = evaluate(model, features, labels, val_mask) print( "Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | " "ETputs(KTEPS) {:.2f}".format( epoch, np.mean(dur), loss.asscalar(), acc, n_edges / np.mean(dur) / 1000 ) ) # test set accuracy acc = evaluate(model, features, labels, test_mask) print("Test accuracy {:.2%}".format(acc)) acc_threshold = 0.75 assert acc > acc_threshold, "Accuracy {} is not greater than threshold {}".format( acc, acc_threshold ) def parse_args(): parser = argparse.ArgumentParser(description="GCN") register_data_args(parser) parser.add_argument("--dropout", type=float, default=0.5, help="dropout probability") parser.add_argument("--gpu", type=int, default=-1, help="gpu") parser.add_argument("--lr", type=float, default=3e-2, help="learning rate") parser.add_argument("--n-epochs", type=int, default=200, help="number of training epochs") parser.add_argument("--n-hidden", type=int, default=16, help="number of hidden gcn units") parser.add_argument("--n-layers", type=int, default=1, help="number of hidden gcn layers") parser.add_argument("--weight-decay", type=float, default=5e-4, help="Weight for L2 loss") parser.add_argument("--self-loop", action="store_true", help="graph self-loop (default=False)") parser.set_defaults(self_loop=False) return parser.parse_args() if __name__ == "__main__": num_gpus = int(os.environ["SM_NUM_GPUS"]) if num_gpus > 0: gpu = 0 else: gpu = -1 args = parse_args() args.gpu = gpu args.dataset = "cora" print(args) main(args)