import torch import torch.nn as nn import torch.nn.functional as F import dgl import dgl.nn as dglnn from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset from dgl import AddSelfLoop import argparse class GCN(nn.Module): def __init__(self, in_size, hid_size, out_size): super().__init__() self.layers = nn.ModuleList() # two-layer GCN self.layers.append(dglnn.GraphConv(in_size, hid_size, activation=F.relu)) self.layers.append(dglnn.GraphConv(hid_size, out_size)) self.dropout = nn.Dropout(0.5) def forward(self, g, features): h = features for i, layer in enumerate(self.layers): if i != 0: h = self.dropout(h) h = layer(g, h) return h def evaluate(g, features, labels, mask, model): model.eval() with torch.no_grad(): logits = model(g, features) logits = logits[mask] labels = labels[mask] _, indices = torch.max(logits, dim=1) correct = torch.sum(indices == labels) return correct.item() * 1.0 / len(labels) def train(g, features, labels, masks, model): # define train/val samples, loss function and optimizer train_mask = masks[0] val_mask = masks[1] loss_fcn = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=1e-2, weight_decay=5e-4) # training loop for epoch in range(200): model.train() logits = model(g, features) loss = loss_fcn(logits[train_mask], labels[train_mask]) optimizer.zero_grad() loss.backward() optimizer.step() acc = evaluate(g, features, labels, val_mask, model) print("Epoch {:05d} | Loss {:.4f} | Accuracy {:.4f} ".format(epoch, loss.item(), acc)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--dataset", type=str, default="cora", help="Dataset name ('cora', 'citeseer', 'pubmed')." ) parser.add_argument("--inductor", type=int, default=0, help="pytorch with inductor") args = parser.parse_args() print(f"Training with DGL built-in GraphConv module.") # load and preprocess dataset transform = AddSelfLoop() # by default, it will first remove self-loops to prevent duplication if args.dataset == "cora": data = CoraGraphDataset(transform=transform) elif args.dataset == "citeseer": data = CiteseerGraphDataset(transform=transform) elif args.dataset == "pubmed": data = PubmedGraphDataset(transform=transform) else: raise ValueError("Unknown dataset: {}".format(args.dataset)) g = data[0] device = torch.device("cuda" if torch.cuda.is_available() else "cpu") g = g.int().to(device) features = g.ndata["feat"] labels = g.ndata["label"] masks = g.ndata["train_mask"], g.ndata["val_mask"], g.ndata["test_mask"] # normalization degs = g.in_degrees().float() norm = torch.pow(degs, -0.5).to(device) norm[torch.isinf(norm)] = 0 g.ndata["norm"] = norm.unsqueeze(1) # create GCN model in_size = features.shape[1] out_size = data.num_classes model = GCN(in_size, 16, out_size).to(device) use_inductor = args.inductor == 1 if use_inductor: model = torch.compile(model, backend="inductor", mode="default") # model training print("Training...") train(g, features, labels, masks, model) # test the model print("Testing...") acc = evaluate(g, features, labels, masks[2], model) print("Test accuracy {:.4f}".format(acc))