# Copyright 2018-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. # Workaround for https://github.com/pytorch/vision/issues/1938 from __future__ import print_function, absolute_import from six.moves import urllib opener = urllib.request.build_opener() opener.addheaders = [("User-agent", "Mozilla/5.0")] urllib.request.install_opener(opener) import argparse import logging import sys import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.utils.data import torch.utils.data.distributed import torchvision from torchvision import datasets, transforms from smdebug.pytorch import * import numpy as np import random from packaging.version import Version logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) logger.addHandler(logging.StreamHandler(sys.stdout)) # from torchvision 0.9.1, 2 candidate mirror website links will be added before "resources" items automatically # Reference PR: https://github.com/pytorch/vision/pull/3559 TORCHVISION_VERSION = "0.9.1" if Version(torchvision.__version__) < Version(TORCHVISION_VERSION): datasets.MNIST.resources = [ ( "https://dlinfra-mnist-dataset.s3-us-west-2.amazonaws.com/mnist/train-images-idx3-ubyte.gz", "f68b3c2dcbeaaa9fbdd348bbdeb94873", ), ( "https://dlinfra-mnist-dataset.s3-us-west-2.amazonaws.com/mnist/train-labels-idx1-ubyte.gz", "d53e105ee54ea40749a09fcbcd1e9432", ), ( "https://dlinfra-mnist-dataset.s3-us-west-2.amazonaws.com/mnist/t10k-images-idx3-ubyte.gz", "9fb629c4189551a2d022fa330f9573f3", ), ( "https://dlinfra-mnist-dataset.s3-us-west-2.amazonaws.com/mnist/t10k-labels-idx1-ubyte.gz", "ec29112dd5afa0611ce80d1b7f02629c", ), ] # Based on https://github.com/pytorch/examples/blob/master/mnist/main.py class Net(nn.Module): def __init__(self): logger.info("Create neural network module") super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=1) def parse_args(): parser = argparse.ArgumentParser(description="PyTorch MNIST Example") parser.add_argument("--data_dir", type=str) parser.add_argument("--batch-size", type=int, default=4, help="Batch size") parser.add_argument("--epochs", type=int, default=1, help="Number of Epochs") parser.add_argument( "--smdebug_path", type=str, default=None, help="S3 URI of the bucket where tensor data will be stored.", ) parser.add_argument("--learning_rate", type=float, default=0.1) parser.add_argument("--momentum", type=float, default=0.9) parser.add_argument("--random_seed", type=bool, default=False) parser.add_argument( "--num_steps", type=int, default=50, help="Reduce the number of training " "and evaluation steps to the give number if desired." "If this is not passed, trains for one epoch " "of training and validation data", ) parser.add_argument( "--log_interval", type=int, default=100, metavar="N", help="how many batches to wait before logging training status", ) opt = parser.parse_args() return opt def _get_train_data_loader(batch_size, training_dir): logger.info("Get train data loader") dataset = datasets.MNIST( training_dir, train=True, download=True, transform=transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] ), ) return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=4) def _get_test_data_loader(test_batch_size, training_dir): logger.info("Get test data loader") return torch.utils.data.DataLoader( datasets.MNIST( training_dir, train=False, download=True, transform=transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] ), ), batch_size=test_batch_size, shuffle=False, num_workers=4, ) def create_smdebug_hook(output_s3_uri): # With the following SaveConfig, we will save tensors for steps 1, 2 and 3 # (indexing starts with 0). save_config = SaveConfig(save_steps=[1, 2, 3]) # Create a hook that logs weights, biases and gradients while training the model. hook = Hook( out_dir=output_s3_uri, save_config=save_config, include_collections=["weights", "gradients", "losses"], ) return hook def train(model, device, optimizer, hook, epochs, log_interval, training_dir): criterion = nn.CrossEntropyLoss() hook.register_loss(criterion) trainloader = _get_train_data_loader(4, training_dir) validloader = _get_test_data_loader(4, training_dir) for epoch in range(epochs): model.train() hook.set_mode(modes.TRAIN) for i, data in enumerate(trainloader): inputs, labels = data optimizer.zero_grad() output = model(inputs) loss = criterion(output, labels) loss.backward() optimizer.step() if i % log_interval == 0: logger.debug( "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( epoch, i * len(data), len(trainloader.sampler), 100.0 * i / len(trainloader), loss.item(), ) ) test(model, hook, validloader, device, criterion) def test(model, hook, test_loader, device, loss_fn): model.eval() hook.set_mode(modes.EVAL) test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += loss_fn(output, target).item() # sum up batch loss pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) logger.debug( "Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format( test_loss, correct, len(test_loader.dataset), 100.0 * correct / len(test_loader.dataset) ) ) def main(): opt = parse_args() if opt.random_seed: torch.manual_seed(128) random.seed(12) np.random.seed(2) device = torch.device("cpu") out_dir = opt.smdebug_path training_dir = opt.data_dir hook = create_smdebug_hook(out_dir) model = Net().to(device) hook.register_hook(model) optimizer = optim.SGD(model.parameters(), lr=opt.learning_rate, momentum=opt.momentum) train(model, device, optimizer, hook, opt.epochs, opt.log_interval, training_dir) print("Training is complete") from smdebug.trials import create_trial print("Created the trial with out_dir {0}".format(out_dir)) trial = create_trial(out_dir) assert trial print("Train steps: " + str(trial.steps(mode=modes.TRAIN))) print("Eval steps: " + str(trial.steps(mode=modes.EVAL))) print(f"trial.tensor_names() = {trial.tensor_names()}") # if loss collection tensors not in in trial.tensor_names() # means they were not saved print(f"collection_manager = {hook.collection_manager}") weights_tensors = hook.collection_manager.get("weights").tensor_names print(f"'weights' collection tensors = {weights_tensors}") assert len(weights_tensors) > 0 gradients_tensors = hook.collection_manager.get("gradients").tensor_names print(f"'gradients' collection tensors = {gradients_tensors}") assert len(gradients_tensors) > 0 losses_tensors = hook.collection_manager.get("losses").tensor_names print(f"'losses' collection tensors = {losses_tensors}") assert len(losses_tensors) > 0 assert all([name in trial.tensor_names() for name in losses_tensors]) print("Validation Complete") if __name__ == "__main__": main()