/* * All or portions of this file Copyright (c) Amazon.com, Inc. or its affiliates or * its licensors. * * For complete copyright and license terms please see the LICENSE at the root of this * distribution (the "License"). All use of this software is governed by the License, * or, if provided, by the license below or the license accompanying this file. Do not * remove or modify any license notices. This file is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * */ // Original file Copyright Crytek GMBH or its affiliates, used under license. // Description : Various math and geometry related functions. #ifndef CRYINCLUDE_EDITOR_UTIL_MATH_H #define CRYINCLUDE_EDITOR_UTIL_MATH_H #pragma once //! Half PI #define PI_HALF (3.1415926535897932384626433832795f / 2.0f) //! Epsilon for vector comparasion. #define FLOAT_EPSILON 0.000001f ////////////////////////////////////////////////////////////////////////// /** Compare two vectors if they are equal. */ inline bool IsVectorsEqual(const Vec3& v1, const Vec3& v2, const float aEpsilon = FLOAT_EPSILON) { return (fabs(v2.x - v1.x) < aEpsilon && fabs(v2.y - v1.y) < aEpsilon && fabs(v2.z - v1.z) < aEpsilon); } ////////////////////////////////////////////////////////////////////////// // Math utilities. ////////////////////////////////////////////////////////////////////////// inline float PointToLineDistance2D(const Vec3& p1, const Vec3& p2, const Vec3& p3) { float dx = p2.x - p1.x; float dy = p2.y - p1.y; if (dx + dy == 0) { return (float)sqrt((p3.x - p1.x) * (p3.x - p1.x) + (p3.y - p1.y) * (p3.y - p1.y)); } float u = ((p3.x - p1.x) * dx + (p3.y - p1.y) * dy) / (dx * dx + dy * dy); if (u < 0) { return (float)sqrt((p3.x - p1.x) * (p3.x - p1.x) + (p3.y - p1.y) * (p3.y - p1.y)); } else if (u > 1) { return (float)sqrt((p3.x - p2.x) * (p3.x - p2.x) + (p3.y - p2.y) * (p3.y - p2.y)); } else { float x = p1.x + u * dx; float y = p1.y + u * dy; return (float)sqrt((p3.x - x) * (p3.x - x) + (p3.y - y) * (p3.y - y)); } } inline float PointToLineDistance(const Vec3& p1, const Vec3& p2, const Vec3& p3) { Vec3 d = p2 - p1; float u = d.Dot(p3 - p1) / (d).GetLengthSquared(); if (u < 0) { return (p3 - p1).GetLength(); } else if (u > 1) { return (p3 - p2).GetLength(); } else { Vec3 p = p1 + u * d; return (p3 - p).GetLength(); } } /** Calculate distance between point and line. @param p1 Source line point. @param p2 Target line point. @param p3 Point to find intersecion with. @param intersectPoint Intersection point on the line. @return Distance between point and line. */ inline float PointToLineDistance(const Vec3& p1, const Vec3& p2, const Vec3& p3, Vec3& intersectPoint) { Vec3 d = p2 - p1; float fLength2 = d.GetLengthSquared(); if (fLength2 < 0.00001f) { // p1-p2 is degenerated to a point intersectPoint = p1; return (p3 - p1).GetLength(); } float u = d.Dot(p3 - p1) / fLength2; if (u < 0) { intersectPoint = p1; return (p3 - p1).GetLength(); } else if (u > 1) { intersectPoint = p2; return (p3 - p2).GetLength(); } else { Vec3 p = p1 + u * d; intersectPoint = p; return (p3 - p).GetLength(); } } /** Function: LineLineIntersect( const Vec3 &p1, const Vec3 &p2, const Vec3 &p3, const Vec3 &p4, Vec3 &pa, Vec3 &pb, float &mua, float &mub ) paulbourke.net/ Copyright Paul Bourke or a third party contributor where indicated. This source code may be freely used provided credits are given to the author. Calculate the line segment PaPb that is the shortest route between two lines P1P2 and P3P4. Calculate also the values of mua and mub where Pa = P1 + mua (P2 - P1) Pb = P3 + mub (P4 - P3) @param p1 Source point of first line. @param p2 Target point of first line. @param p3 Source point of second line. @param p4 Target point of second line. @return FALSE if no solution exists. */ inline bool LineLineIntersect(const Vec3& p1, const Vec3& p2, const Vec3& p3, const Vec3& p4, Vec3& pa, Vec3& pb, float& mua, float& mub) { Vec3 p13, p43, p21; float d1343, d4321, d1321, d4343, d2121; float numer, denom; p13.x = p1.x - p3.x; p13.y = p1.y - p3.y; p13.z = p1.z - p3.z; p43.x = p4.x - p3.x; p43.y = p4.y - p3.y; p43.z = p4.z - p3.z; if (fabs(p43.x) < LINE_EPS && fabs(p43.y) < LINE_EPS && fabs(p43.z) < LINE_EPS) { return false; } p21.x = p2.x - p1.x; p21.y = p2.y - p1.y; p21.z = p2.z - p1.z; if (fabs(p21.x) < LINE_EPS && fabs(p21.y) < LINE_EPS && fabs(p21.z) < LINE_EPS) { return false; } d1343 = p13.x * p43.x + p13.y * p43.y + p13.z * p43.z; d4321 = p43.x * p21.x + p43.y * p21.y + p43.z * p21.z; d1321 = p13.x * p21.x + p13.y * p21.y + p13.z * p21.z; d4343 = p43.x * p43.x + p43.y * p43.y + p43.z * p43.z; d2121 = p21.x * p21.x + p21.y * p21.y + p21.z * p21.z; denom = d2121 * d4343 - d4321 * d4321; if (fabs(denom) < LINE_EPS) { return false; } numer = d1343 * d4321 - d1321 * d4343; mua = numer / denom; mub = (d1343 + d4321 * (mua)) / d4343; pa.x = p1.x + mua * p21.x; pa.y = p1.y + mua * p21.y; pa.z = p1.z + mua * p21.z; pb.x = p3.x + mub * p43.x; pb.y = p3.y + mub * p43.y; pb.z = p3.z + mub * p43.z; return true; } /*! Calculates shortest distance between ray and a arbitary line segment. @param raySrc Source point of ray. @param rayTrg Target point of ray. @param p1 First point of line segment. @param p2 Second point of line segment. @param intersectPoint This parameter returns nearest point on line segment to ray. @return distance fro ray to line segment. */ inline float RayToLineDistance(const Vec3& raySrc, const Vec3& rayTrg, const Vec3& p1, const Vec3& p2, Vec3& nearestPoint) { Vec3 intPnt; Vec3 rayLineP1 = raySrc; Vec3 rayLineP2 = rayTrg; Vec3 pa, pb; float ua, ub; if (!LineLineIntersect(p1, p2, rayLineP1, rayLineP2, pa, pb, ua, ub)) { return FLT_MAX; } float d = 0; if (ua < 0) { d = PointToLineDistance(rayLineP1, rayLineP2, p1, intPnt); } else if (ua > 1) { d = PointToLineDistance(rayLineP1, rayLineP2, p2, intPnt); } else { intPnt = rayLineP1 + ub * (rayLineP2 - rayLineP1); d = (pb - pa).GetLength(); } nearestPoint = intPnt; return d; } ////////////////////////////////////////////////////////////////////////// inline Matrix34 MatrixFromVector(const Vec3& dir, const Vec3& up = Vec3(0, 0, 1.0f), float rollAngle = 0) { // LookAt transform. Vec3 xAxis, yAxis, zAxis; Vec3 upVector = up; if (dir.IsZero()) { Matrix33 tm; tm.SetIdentity(); return tm; } yAxis = dir.GetNormalized(); if (yAxis.x == 0 && yAxis.y == 0) { upVector.Set(-yAxis.z, 0, 0); } xAxis = upVector.Cross(yAxis).GetNormalized(); zAxis = xAxis.Cross(yAxis).GetNormalized(); Matrix33 tm; tm.SetFromVectors(xAxis, yAxis, zAxis); if (rollAngle != 0) { Matrix33 RollMtx; RollMtx.SetRotationY(rollAngle); // Matrix multiply. tm = RollMtx * tm; } return tm; } //TODO: could we include this function in the core engine math Intersect namespace ? namespace Intersect { //! handy function for Ray AABB intersection, the Ray object is created inside inline uint8 Ray_AABB(const Vec3& rRayStart, const Vec3& rRayDir, const AABB& rBox, Vec3& rOutPt) { return Ray_AABB(Ray(rRayStart, rRayDir), rBox, rOutPt); } //! Check if ray intersect edge of bounding box. //! @param epsilonDist if distance between ray and egde is less then this epsilon then edge was intersected. //! @param dist Distance between ray and edge. //! @param intPnt intersection point. inline bool Ray_AABBEdge(const Vec3& raySrc, const Vec3& rayDir, const AABB& aabb, float epsilonDist, float& dist, Vec3& intPnt) { // Check 6 group lines. Vec3 rayTrg = raySrc + rayDir * 10000.0f; Vec3 pnt[12]; float d[12]; // Near d[0] = RayToLineDistance(raySrc, rayTrg, Vec3(aabb.min.x, aabb.min.y, aabb.max.z), Vec3(aabb.max.x, aabb.min.y, aabb.max.z), pnt[0]); d[1] = RayToLineDistance(raySrc, rayTrg, Vec3(aabb.min.x, aabb.max.y, aabb.max.z), Vec3(aabb.max.x, aabb.max.y, aabb.max.z), pnt[1]); d[2] = RayToLineDistance(raySrc, rayTrg, Vec3(aabb.min.x, aabb.min.y, aabb.max.z), Vec3(aabb.min.x, aabb.max.y, aabb.max.z), pnt[2]); d[3] = RayToLineDistance(raySrc, rayTrg, Vec3(aabb.max.x, aabb.min.y, aabb.max.z), Vec3(aabb.max.x, aabb.max.y, aabb.max.z), pnt[3]); // Far d[4] = RayToLineDistance(raySrc, rayTrg, Vec3(aabb.min.x, aabb.min.y, aabb.min.z), Vec3(aabb.max.x, aabb.min.y, aabb.min.z), pnt[4]); d[5] = RayToLineDistance(raySrc, rayTrg, Vec3(aabb.min.x, aabb.max.y, aabb.min.z), Vec3(aabb.max.x, aabb.max.y, aabb.min.z), pnt[5]); d[6] = RayToLineDistance(raySrc, rayTrg, Vec3(aabb.min.x, aabb.min.y, aabb.min.z), Vec3(aabb.min.x, aabb.max.y, aabb.min.z), pnt[6]); d[7] = RayToLineDistance(raySrc, rayTrg, Vec3(aabb.max.x, aabb.min.y, aabb.min.z), Vec3(aabb.max.x, aabb.max.y, aabb.min.z), pnt[7]); // Sides. d[8] = RayToLineDistance(raySrc, rayTrg, Vec3(aabb.min.x, aabb.min.y, aabb.min.z), Vec3(aabb.min.x, aabb.min.y, aabb.max.z), pnt[8]); d[9] = RayToLineDistance(raySrc, rayTrg, Vec3(aabb.max.x, aabb.min.y, aabb.min.z), Vec3(aabb.max.x, aabb.min.y, aabb.max.z), pnt[9]); d[10] = RayToLineDistance(raySrc, rayTrg, Vec3(aabb.min.x, aabb.max.y, aabb.min.z), Vec3(aabb.min.x, aabb.max.y, aabb.max.z), pnt[10]); d[11] = RayToLineDistance(raySrc, rayTrg, Vec3(aabb.max.x, aabb.max.y, aabb.min.z), Vec3(aabb.max.x, aabb.max.y, aabb.max.z), pnt[11]); dist = FLT_MAX; for (int i = 0; i < 12; i++) { if (d[i] < dist) { dist = d[i]; intPnt = pnt[i]; } } if (dist < epsilonDist) { return true; } return false; } }; inline int gcd(int a, int b) { int c = a % b; while (c != 0) { a = b; b = c; c = a % b; } return b; } #endif // CRYINCLUDE_EDITOR_UTIL_MATH_H