from __future__ import print_function, division, absolute_import import collections import functools import sys from numba import utils from numba.ir import Loc from numba.errors import UnsupportedError # List of bytecodes creating a new block in the control flow graph # (in addition to explicit jump labels). NEW_BLOCKERS = frozenset(['SETUP_LOOP', 'FOR_ITER', 'SETUP_WITH']) class CFBlock(object): def __init__(self, offset): self.offset = offset self.body = [] # A map of jumps to outgoing blocks (successors): # { offset of outgoing block -> number of stack pops } self.outgoing_jumps = {} # A map of jumps to incoming blocks (predecessors): # { offset of incoming block -> number of stack pops } self.incoming_jumps = {} self.terminating = False def __repr__(self): args = (self.offset, sorted(self.outgoing_jumps), sorted(self.incoming_jumps)) return "block(offset:%d, outgoing: %s, incoming: %s)" % args def __iter__(self): return iter(self.body) class Loop(collections.namedtuple("Loop", ("entries", "exits", "header", "body"))): """ A control flow loop, as detected by a CFGraph object. """ __slots__ = () # The loop header is enough to detect that two loops are really # the same, assuming they belong to the same graph. # (note: in practice, only one loop instance is created per graph # loop, so identity would be fine) def __eq__(self, other): return isinstance(other, Loop) and other.header == self.header def __hash__(self): return hash(self.header) class CFGraph(object): """ Generic (almost) implementation of a Control Flow Graph. """ def __init__(self): self._nodes = set() self._preds = collections.defaultdict(set) self._succs = collections.defaultdict(set) self._edge_data = {} self._entry_point = None def add_node(self, node): """ Add *node* to the graph. This is necessary before adding any edges from/to the node. *node* can be any hashable object. """ self._nodes.add(node) def add_edge(self, src, dest, data=None): """ Add an edge from node *src* to node *dest*, with optional per-edge *data*. If such an edge already exists, it is replaced (duplicate edges are not possible). """ if src not in self._nodes: raise ValueError("Cannot add edge as src node %s not in nodes %s" % (src, self._nodes)) if dest not in self._nodes: raise ValueError("Cannot add edge as dest node %s not in nodes %s" % (dest, self._nodes)) self._add_edge(src, dest, data) def successors(self, src): """ Yield (node, data) pairs representing the successors of node *src*. (*data* will be None if no data was specified when adding the edge) """ for dest in self._succs[src]: yield dest, self._edge_data[src, dest] def predecessors(self, dest): """ Yield (node, data) pairs representing the predecessors of node *dest*. (*data* will be None if no data was specified when adding the edge) """ for src in self._preds[dest]: yield src, self._edge_data[src, dest] def set_entry_point(self, node): """ Set the entry point of the graph to *node*. """ assert node in self._nodes self._entry_point = node def process(self): """ Compute various properties of the control flow graph. The graph must have been fully populated, and its entry point specified. """ if self._entry_point is None: raise RuntimeError("no entry point defined!") self._eliminate_dead_blocks() self._find_exit_points() self._find_dominators() self._find_back_edges() self._find_topo_order() self._find_descendents() self._find_loops() self._find_post_dominators() self._find_immediate_dominators() self._find_dominance_frontier() self._find_dominator_tree() def dominators(self): """ Return a dictionary of {node -> set(nodes)} mapping each node to the nodes dominating it. A node D dominates a node N when any path leading to N must go through D """ return self._doms def post_dominators(self): """ Return a dictionary of {node -> set(nodes)} mapping each node to the nodes post-dominating it. A node P post-dominates a node N when any path starting from N must go through P. """ return self._post_doms def immediate_dominators(self): """ Return a dictionary of {node -> node} mapping each node to its immediate dominator (idom). The idom(B) is the closest strict dominator of V """ return self._idom def dominance_frontier(self): """ Return a dictionary of {node -> set(nodes)} mapping each node to the nodes in its dominance frontier. The dominance frontier _df(N) is the set of all nodes that are immediate successors to blocks dominanted by N but which aren't stricly dominanted by N """ return self._df def dominator_tree(self): """ return a dictionary of {node -> set(nodes)} mapping each node to the set of nodes it immediately dominates The domtree(B) is the closest strict set of nodes that B dominates """ return self._domtree def descendents(self, node): """ Return the set of descendents of the given *node*, in topological order (ignoring back edges). """ return self._descs[node] def entry_point(self): """ Return the entry point node. """ assert self._entry_point is not None return self._entry_point def exit_points(self): """ Return the computed set of exit nodes (may be empty). """ return self._exit_points def backbone(self): """ Return the set of nodes constituting the graph's backbone. (i.e. the nodes that every path starting from the entry point must go through). By construction, it is non-empty: it contains at least the entry point. """ return self._post_doms[self._entry_point] def loops(self): """ Return a dictionary of {node -> loop} mapping each loop header to the loop (a Loop instance) starting with it. """ return self._loops def in_loops(self, node): """ Return the list of Loop objects the *node* belongs to, from innermost to outermost. """ return [self._loops[x] for x in self._in_loops.get(node, ())] def dead_nodes(self): """ Return the set of dead nodes (eliminated from the graph). """ return self._dead_nodes def nodes(self): """ Return the set of live nodes. """ return self._nodes def topo_order(self): """ Return the sequence of nodes in topological order (ignoring back edges). """ return self._topo_order def topo_sort(self, nodes, reverse=False): """ Iterate over the *nodes* in topological order (ignoring back edges). The sort isn't guaranteed to be stable. """ nodes = set(nodes) it = self._topo_order if reverse: it = reversed(it) for n in it: if n in nodes: yield n def dump(self, file=None): """ Dump extensive debug information. """ import pprint file = file or sys.stdout if 1: print("CFG adjacency lists:", file=file) self._dump_adj_lists(file) print("CFG dominators:", file=file) pprint.pprint(self._doms, stream=file) print("CFG post-dominators:", file=file) pprint.pprint(self._post_doms, stream=file) print("CFG back edges:", sorted(self._back_edges), file=file) print("CFG loops:", file=file) pprint.pprint(self._loops, stream=file) print("CFG node-to-loops:", file=file) pprint.pprint(self._in_loops, stream=file) print("CFG backbone:", file=file) pprint.pprint(self.backbone(), stream=file) def render_dot(self, filename="numba_cfg.dot"): """Render the controlflow graph with GraphViz DOT via the ``graphviz`` python binding. Returns ------- g : graphviz.Digraph Use `g.view()` to open the graph in the default PDF application. """ try: import graphviz as gv except ImportError: raise ImportError( "The feature requires `graphviz` but it is not available. " "Please install with `pip install graphviz`" ) g = gv.Digraph(filename=filename) # Populate the nodes for n in self._nodes: g.node(str(n)) # Populate the edges for n in self._nodes: for edge in self._succs[n]: g.edge(str(n), str(edge)) return g # Internal APIs def _add_edge(self, from_, to, data=None): # This internal version allows adding edges to/from unregistered # (ghost) nodes. self._preds[to].add(from_) self._succs[from_].add(to) self._edge_data[from_, to] = data def _remove_node_edges(self, node): for succ in self._succs.pop(node, ()): self._preds[succ].remove(node) del self._edge_data[node, succ] for pred in self._preds.pop(node, ()): self._succs[pred].remove(node) del self._edge_data[pred, node] def _dfs(self, entries=None): if entries is None: entries = (self._entry_point,) seen = set() stack = list(entries) while stack: node = stack.pop() if node not in seen: yield node seen.add(node) for succ in self._succs[node]: stack.append(succ) def _eliminate_dead_blocks(self): """ Eliminate all blocks not reachable from the entry point, and stash them into self._dead_nodes. """ live = set() for node in self._dfs(): live.add(node) self._dead_nodes = self._nodes - live self._nodes = live # Remove all edges leading from dead nodes for dead in self._dead_nodes: self._remove_node_edges(dead) def _find_exit_points(self): """ Compute the graph's exit points. """ exit_points = set() for n in self._nodes: if not self._succs.get(n): exit_points.add(n) self._exit_points = exit_points def _find_postorder(self): succs = self._succs back_edges = self._back_edges post_order = [] seen = set() def _dfs_rec(node): if node not in seen: seen.add(node) for dest in succs[node]: if (node, dest) not in back_edges: _dfs_rec(dest) post_order.append(node) _dfs_rec(self._entry_point) return post_order def _find_immediate_dominators(self): # The algorithm implemented computes the immediate dominator # for each node in the CFG which is equivalent to build a dominator tree # Based on the implementation from NetworkX # library - nx.immediate_dominators # https://github.com/networkx/networkx/blob/858e7cb183541a78969fed0cbcd02346f5866c02/networkx/algorithms/dominance.py # noqa: E501 # References: # Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy # A Simple, Fast Dominance Algorithm # https://www.cs.rice.edu/~keith/EMBED/dom.pdf def intersect(u, v): while u != v: while idx[u] < idx[v]: u = idom[u] while idx[u] > idx[v]: v = idom[v] return u entry = self._entry_point preds_table = self._preds order = self._find_postorder() idx = {e: i for i, e in enumerate(order)} # index of each node idom = {entry : entry} order.pop() order.reverse() changed = True while changed: changed = False for u in order: new_idom = functools.reduce(intersect, (v for v in preds_table[u] if v in idom)) if u not in idom or idom[u] != new_idom: idom[u] = new_idom changed = True self._idom = idom def _find_dominator_tree(self): idom = self._idom domtree = collections.defaultdict(set) for u, v in idom.items(): # v dominates u if u not in domtree: domtree[u] = set() if u != v: domtree[v].add(u) self._domtree = domtree def _find_dominance_frontier(self): idom = self._idom preds_table = self._preds df = {u: set() for u in idom} for u in idom: if len(preds_table[u]) < 2: continue for v in preds_table[u]: while v != idom[u]: df[v].add(u) v = idom[v] self._df = df def _find_dominators_internal(self, post=False): # See theoretical description in # http://en.wikipedia.org/wiki/Dominator_%28graph_theory%29 # The algorithm implemented here uses a todo-list as described # in http://pages.cs.wisc.edu/~fischer/cs701.f08/finding.loops.html if post: entries = set(self._exit_points) preds_table = self._succs succs_table = self._preds else: entries = set([self._entry_point]) preds_table = self._preds succs_table = self._succs if not entries: raise RuntimeError("no entry points: dominator algorithm " "cannot be seeded") doms = {} for e in entries: doms[e] = set([e]) todo = [] for n in self._nodes: if n not in entries: doms[n] = set(self._nodes) todo.append(n) while todo: n = todo.pop() if n in entries: continue new_doms = set([n]) preds = preds_table[n] if preds: new_doms |= functools.reduce(set.intersection, [doms[p] for p in preds]) if new_doms != doms[n]: assert len(new_doms) < len(doms[n]) doms[n] = new_doms todo.extend(succs_table[n]) return doms def _find_dominators(self): self._doms = self._find_dominators_internal(post=False) def _find_post_dominators(self): # To handle infinite loops correctly, we need to add a dummy # exit point, and link members of infinite loops to it. dummy_exit = object() self._exit_points.add(dummy_exit) for loop in self._loops.values(): if not loop.exits: for b in loop.body: self._add_edge(b, dummy_exit) self._post_doms = self._find_dominators_internal(post=True) # Fix the _post_doms table to make no reference to the dummy exit del self._post_doms[dummy_exit] for doms in self._post_doms.values(): doms.discard(dummy_exit) self._remove_node_edges(dummy_exit) self._exit_points.remove(dummy_exit) # Finding loops and back edges: see # http://pages.cs.wisc.edu/~fischer/cs701.f08/finding.loops.html def _find_back_edges(self): """ Find back edges. An edge (src, dest) is a back edge if and only if *dest* dominates *src*. """ back_edges = set() for src, succs in self._succs.items(): back = self._doms[src] & succs # In CPython bytecode, at most one back edge can flow from a # given block. assert len(back) <= 1 back_edges.update((src, dest) for dest in back) self._back_edges = back_edges def _find_topo_order(self): succs = self._succs back_edges = self._back_edges post_order = [] seen = set() def _dfs_rec(node): if node not in seen: seen.add(node) for dest in succs[node]: if (node, dest) not in back_edges: _dfs_rec(dest) post_order.append(node) _dfs_rec(self._entry_point) post_order.reverse() self._topo_order = post_order def _find_descendents(self): descs = {} for node in reversed(self._topo_order): descs[node] = node_descs = set() for succ in self._succs[node]: if (node, succ) not in self._back_edges: node_descs.add(succ) node_descs.update(descs[succ]) self._descs = descs def _find_loops(self): """ Find the loops defined by the graph's back edges. """ bodies = {} for src, dest in self._back_edges: # The destination of the back edge is the loop header header = dest # Build up the loop body from the back edge's source node, # up to the source header. body = set([header]) queue = [src] while queue: n = queue.pop() if n not in body: body.add(n) queue.extend(self._preds[n]) # There can be several back edges to a given loop header; # if so, merge the resulting body fragments. if header in bodies: bodies[header].update(body) else: bodies[header] = body # Create a Loop object for each header. loops = {} for header, body in bodies.items(): entries = set() exits = set() for n in body: entries.update(self._preds[n] - body) exits.update(self._succs[n] - body) loop = Loop(header=header, body=body, entries=entries, exits=exits) loops[header] = loop self._loops = loops # Compute the loops to which each node belongs. in_loops = dict((n, []) for n in self._nodes) # Sort loops from longest to shortest # This ensures that outer loops will come before inner loops for loop in sorted(loops.values(), key=lambda loop: len(loop.body)): for n in loop.body: in_loops[n].append(loop.header) self._in_loops = in_loops def _dump_adj_lists(self, file): adj_lists = dict((src, sorted(list(dests))) for src, dests in self._succs.items()) import pprint pprint.pprint(adj_lists, stream=file) def __eq__(self, other): if not isinstance(other, CFGraph): raise NotImplementedError # A few derived items are checked to makes sure process() has been # invoked equally. for x in ['_nodes', '_edge_data', '_entry_point', '_preds', '_succs', '_doms', '_back_edges']: this = getattr(self, x, None) that = getattr(other, x, None) if this != that: return False return True def __ne__(self, other): return not self.__eq__(other) class ControlFlowAnalysis(object): """ Attributes ---------- - bytecode - blocks - blockseq - doms: dict of set Dominators - backbone: set of block offsets The set of block that is common to all possible code path. """ def __init__(self, bytecode): self.bytecode = bytecode self.blocks = {} self.liveblocks = {} self.blockseq = [] self.doms = None self.backbone = None # Internal temp states self._force_new_block = True self._curblock = None self._blockstack = [] self._loops = [] self._withs = [] def iterblocks(self): """ Return all blocks in sequence of occurrence """ for i in self.blockseq: yield self.blocks[i] def iterliveblocks(self): """ Return all live blocks in sequence of occurrence """ for i in self.blockseq: if i in self.liveblocks: yield self.blocks[i] def incoming_blocks(self, block): """ Yield (incoming block, number of stack pops) pairs for *block*. """ for i, pops in block.incoming_jumps.items(): if i in self.liveblocks: yield self.blocks[i], pops def dump(self, file=None): self.graph.dump(file=None) def run(self): for inst in self._iter_inst(): fname = "op_%s" % inst.opname fn = getattr(self, fname, None) if fn is not None: fn(inst) elif inst.is_jump: # this catches e.g. try... except l = Loc(self.bytecode.func_id.filename, inst.lineno) if inst.opname in {"SETUP_EXCEPT", "SETUP_FINALLY"}: msg = "'try' block not supported until python3.7 or later" else: msg = "Use of unsupported opcode (%s) found" % inst.opname raise UnsupportedError(msg, loc=l) else: # Non-jump instructions are ignored pass # intentionally # Close all blocks for cur, nxt in zip(self.blockseq, self.blockseq[1:]): blk = self.blocks[cur] if not blk.outgoing_jumps and not blk.terminating: blk.outgoing_jumps[nxt] = 0 graph = CFGraph() for b in self.blocks: graph.add_node(b) for b in self.blocks.values(): for out, pops in b.outgoing_jumps.items(): graph.add_edge(b.offset, out, pops) graph.set_entry_point(min(self.blocks)) graph.process() self.graph = graph # Fill incoming for b in utils.itervalues(self.blocks): for out, pops in b.outgoing_jumps.items(): self.blocks[out].incoming_jumps[b.offset] = pops # Find liveblocks self.liveblocks = dict((i, self.blocks[i]) for i in self.graph.nodes()) for lastblk in reversed(self.blockseq): if lastblk in self.liveblocks: break else: raise AssertionError("No live block that exits!?") # Find backbone backbone = self.graph.backbone() # Filter out in loop blocks (Assuming no other cyclic control blocks) # This is to unavoid variable defined in loops to be considered as # function scope. inloopblocks = set() for b in self.blocks.keys(): if self.graph.in_loops(b): inloopblocks.add(b) self.backbone = backbone - inloopblocks def jump(self, target, pops=0): """ Register a jump (conditional or not) to *target* offset. *pops* is the number of stack pops implied by the jump (default 0). """ self._curblock.outgoing_jumps[target] = pops def _iter_inst(self): for inst in self.bytecode: if self._use_new_block(inst): self._start_new_block(inst) self._curblock.body.append(inst.offset) yield inst def _use_new_block(self, inst): if inst.offset in self.bytecode.labels: res = True elif inst.opname in NEW_BLOCKERS: res = True else: res = self._force_new_block self._force_new_block = False return res def _start_new_block(self, inst): self._curblock = CFBlock(inst.offset) self.blocks[inst.offset] = self._curblock self.blockseq.append(inst.offset) def op_SETUP_LOOP(self, inst): end = inst.get_jump_target() self._blockstack.append(end) self._loops.append((inst.offset, end)) # TODO: Looplifting requires the loop entry be its own block. # Forcing a new block here is the simplest solution for now. # But, we should consider other less ad-hoc ways. self.jump(inst.next) self._force_new_block = True def op_SETUP_WITH(self, inst): end = inst.get_jump_target() self._blockstack.append(end) self._withs.append((inst.offset, end)) # TODO: WithLifting requires the loop entry be its own block. # Forcing a new block here is the simplest solution for now. # But, we should consider other less ad-hoc ways. self.jump(inst.next) self._force_new_block = True def op_POP_BLOCK(self, inst): self._blockstack.pop() def op_FOR_ITER(self, inst): self.jump(inst.get_jump_target()) self.jump(inst.next) self._force_new_block = True def _op_ABSOLUTE_JUMP_IF(self, inst): self.jump(inst.get_jump_target()) self.jump(inst.next) self._force_new_block = True op_POP_JUMP_IF_FALSE = _op_ABSOLUTE_JUMP_IF op_POP_JUMP_IF_TRUE = _op_ABSOLUTE_JUMP_IF op_JUMP_IF_FALSE = _op_ABSOLUTE_JUMP_IF op_JUMP_IF_TRUE = _op_ABSOLUTE_JUMP_IF def _op_ABSOLUTE_JUMP_OR_POP(self, inst): self.jump(inst.get_jump_target()) self.jump(inst.next, pops=1) self._force_new_block = True op_JUMP_IF_FALSE_OR_POP = _op_ABSOLUTE_JUMP_OR_POP op_JUMP_IF_TRUE_OR_POP = _op_ABSOLUTE_JUMP_OR_POP def op_JUMP_ABSOLUTE(self, inst): self.jump(inst.get_jump_target()) self._force_new_block = True def op_JUMP_FORWARD(self, inst): self.jump(inst.get_jump_target()) self._force_new_block = True def op_RETURN_VALUE(self, inst): self._curblock.terminating = True self._force_new_block = True def op_RAISE_VARARGS(self, inst): self._curblock.terminating = True self._force_new_block = True def op_BREAK_LOOP(self, inst): self.jump(self._blockstack[-1]) self._force_new_block = True