""" This file implements the code-generator for parallel-vectorize. ParallelUFunc is the platform independent base class for generating the thread dispatcher. This thread dispatcher launches threads that execute the generated function of UFuncCore. UFuncCore is subclassed to specialize for the input/output types. The actual workload is invoked inside the function generated by UFuncCore. UFuncCore also defines a work-stealing mechanism that allows idle threads to steal works from other threads. """ from __future__ import print_function, absolute_import import os import platform import sys import warnings from threading import RLock as threadRLock import multiprocessing import numpy as np import llvmlite.llvmpy.core as lc import llvmlite.binding as ll from numba.npyufunc import ufuncbuilder from numba.numpy_support import as_dtype from numba import types, config, utils from numba.npyufunc.wrappers import _wrapper_info def get_thread_count(): """ Gets the available thread count. """ t = config.NUMBA_NUM_THREADS if t < 1: raise ValueError("Number of threads specified must be > 0.") return t NUM_THREADS = get_thread_count() def build_gufunc_kernel(library, ctx, info, sig, inner_ndim): """Wrap the original CPU ufunc/gufunc with a parallel dispatcher. This function will wrap gufuncs and ufuncs something like. Args ---- ctx numba's codegen context info: (library, env, name) inner function info sig type signature of the gufunc inner_ndim inner dimension of the gufunc (this is len(sig.args) in the case of a ufunc) Returns ------- wrapper_info : (library, env, name) The info for the gufunc wrapper. Details ------- The kernel signature looks like this: void kernel(char **args, npy_intp *dimensions, npy_intp* steps, void* data) args - the input arrays + output arrays dimensions - the dimensions of the arrays steps - the step size for the array (this is like sizeof(type)) data - any additional data The parallel backend then stages multiple calls to this kernel concurrently across a number of threads. Practically, for each item of work, the backend duplicates `dimensions` and adjusts the first entry to reflect the size of the item of work, it also forms up an array of pointers into the args for offsets to read/write from/to with respect to its position in the items of work. This allows the same kernel to be used for each item of work, with simply adjusted reads/writes/domain sizes and is safe by virtue of the domain partitioning. NOTE: The execution backend is passed the requested thread count, but it can choose to ignore it (TBB)! """ assert isinstance(info, tuple) # guard against old usage # Declare types and function byte_t = lc.Type.int(8) byte_ptr_t = lc.Type.pointer(byte_t) byte_ptr_ptr_t = lc.Type.pointer(byte_ptr_t) intp_t = ctx.get_value_type(types.intp) intp_ptr_t = lc.Type.pointer(intp_t) fnty = lc.Type.function(lc.Type.void(), [lc.Type.pointer(byte_ptr_t), lc.Type.pointer(intp_t), lc.Type.pointer(intp_t), byte_ptr_t]) wrapperlib = ctx.codegen().create_library('parallelgufuncwrapper') mod = wrapperlib.create_ir_module('parallel.gufunc.wrapper') kernel_name = ".kernel.{}_{}".format(id(info.env), info.name) lfunc = mod.add_function(fnty, name=kernel_name) bb_entry = lfunc.append_basic_block('') # Function body starts builder = lc.Builder(bb_entry) args, dimensions, steps, data = lfunc.args # Release the GIL (and ensure we have the GIL) # Note: numpy ufunc may not always release the GIL; thus, # we need to ensure we have the GIL. pyapi = ctx.get_python_api(builder) gil_state = pyapi.gil_ensure() thread_state = pyapi.save_thread() def as_void_ptr(arg): return builder.bitcast(arg, byte_ptr_t) # Array count is input signature plus 1 (due to output array) array_count = len(sig.args) + 1 parallel_for_ty = lc.Type.function(lc.Type.void(), [byte_ptr_t] * 5 + [intp_t, ] * 2) parallel_for = mod.get_or_insert_function(parallel_for_ty, name='numba_parallel_for') # Reference inner-function and link innerfunc_fnty = lc.Type.function( lc.Type.void(), [byte_ptr_ptr_t, intp_ptr_t, intp_ptr_t, byte_ptr_t], ) tmp_voidptr = mod.get_or_insert_function( innerfunc_fnty, name=info.name, ) wrapperlib.add_linking_library(info.library) # Prepare call fnptr = builder.bitcast(tmp_voidptr, byte_ptr_t) innerargs = [as_void_ptr(x) for x in [args, dimensions, steps, data]] builder.call(parallel_for, [fnptr] + innerargs + [intp_t(x) for x in (inner_ndim, array_count)]) # Release the GIL pyapi.restore_thread(thread_state) pyapi.gil_release(gil_state) builder.ret_void() wrapperlib.add_ir_module(mod) wrapperlib.add_linking_library(library) return _wrapper_info(library=wrapperlib, name=lfunc.name, env=info.env) # ------------------------------------------------------------------------------ class ParallelUFuncBuilder(ufuncbuilder.UFuncBuilder): def build(self, cres, sig): _launch_threads() # Buider wrapper for ufunc entry point ctx = cres.target_context signature = cres.signature library = cres.library fname = cres.fndesc.llvm_func_name info = build_ufunc_wrapper(library, ctx, fname, signature, cres) ptr = info.library.get_pointer_to_function(info.name) # Get dtypes dtypenums = [np.dtype(a.name).num for a in signature.args] dtypenums.append(np.dtype(signature.return_type.name).num) keepalive = () return dtypenums, ptr, keepalive def build_ufunc_wrapper(library, ctx, fname, signature, cres): innerfunc = ufuncbuilder.build_ufunc_wrapper(library, ctx, fname, signature, objmode=False, cres=cres) info = build_gufunc_kernel(library, ctx, innerfunc, signature, len(signature.args)) return info # --------------------------------------------------------------------------- class ParallelGUFuncBuilder(ufuncbuilder.GUFuncBuilder): def __init__(self, py_func, signature, identity=None, cache=False, targetoptions={}): # Force nopython mode targetoptions.update(dict(nopython=True)) super( ParallelGUFuncBuilder, self).__init__( py_func=py_func, signature=signature, identity=identity, cache=cache, targetoptions=targetoptions) def build(self, cres): """ Returns (dtype numbers, function ptr, EnvironmentObject) """ _launch_threads() # Build wrapper for ufunc entry point info = build_gufunc_wrapper( self.py_func, cres, self.sin, self.sout, cache=self.cache, is_parfors=False, ) ptr = info.library.get_pointer_to_function(info.name) env = info.env # Get dtypes dtypenums = [] for a in cres.signature.args: if isinstance(a, types.Array): ty = a.dtype else: ty = a dtypenums.append(as_dtype(ty).num) return dtypenums, ptr, env # This is not a member of the ParallelGUFuncBuilder function because it is # called without an enclosing instance from parfors def build_gufunc_wrapper(py_func, cres, sin, sout, cache, is_parfors): """Build gufunc wrapper for the given arguments. The *is_parfors* is a boolean indicating whether the gufunc is being built for use as a ParFors kernel. This changes codegen and caching behavior. """ library = cres.library ctx = cres.target_context signature = cres.signature innerinfo = ufuncbuilder.build_gufunc_wrapper( py_func, cres, sin, sout, cache=cache, is_parfors=is_parfors, ) sym_in = set(sym for term in sin for sym in term) sym_out = set(sym for term in sout for sym in term) inner_ndim = len(sym_in | sym_out) info = build_gufunc_kernel( library, ctx, innerinfo, signature, inner_ndim, ) return info # --------------------------------------------------------------------------- _backend_init_thread_lock = threadRLock() _windows = sys.platform.startswith('win32') class _nop(object): """A no-op contextmanager """ def __enter__(self): pass def __exit__(self, *args): pass try: if utils.PY3: # Force the use of an RLock in the case a fork was used to start the # process and thereby the init sequence, some of the threading backend # init sequences are not fork safe. Also, windows global mp locks seem # to be fine. if "fork" in multiprocessing.get_start_method() or _windows: _backend_init_process_lock = multiprocessing.get_context().RLock() else: _backend_init_process_lock = _nop() else: # windows uses spawn so is fine, linux uses fork has the lock _backend_init_process_lock = multiprocessing.RLock() except OSError as e: # probably lack of /dev/shm for semaphore writes, warn the user msg = ("Could not obtain multiprocessing lock due to OS level error: %s\n" "A likely cause of this problem is '/dev/shm' is missing or" "read-only such that necessary semaphores cannot be written.\n" "*** The responsibility of ensuring multiprocessing safe access to " "this initialization sequence/module import is deferred to the " "user! ***\n") warnings.warn(msg % str(e)) _backend_init_process_lock = _nop() _is_initialized = False # this is set by _launch_threads _threading_layer = None def threading_layer(): """ Get the name of the threading layer in use for parallel CPU targets """ if _threading_layer is None: raise ValueError("Threading layer is not initialized.") else: return _threading_layer def _launch_threads(): with _backend_init_process_lock: with _backend_init_thread_lock: global _is_initialized if _is_initialized: return from ctypes import CFUNCTYPE, c_int def select_known_backend(backend): """ Loads a specific threading layer backend based on string """ lib = None if backend.startswith("tbb"): try: from . import tbbpool as lib except ImportError: pass elif backend.startswith("omp"): # TODO: Check that if MKL is present that it is a version # that understands GNU OMP might be present try: from . import omppool as lib except ImportError: pass elif backend.startswith("workqueue"): from . import workqueue as lib else: msg = "Unknown value specified for threading layer: %s" raise ValueError(msg % backend) return lib def select_from_backends(backends): """ Selects from presented backends and returns the first working """ lib = None for backend in backends: lib = select_known_backend(backend) if lib is not None: break else: backend = '' return lib, backend t = str(config.THREADING_LAYER).lower() namedbackends = ['tbb', 'omp', 'workqueue'] lib = None _IS_OSX = platform.system() == "Darwin" _IS_LINUX = platform.system() == "Linux" err_helpers = dict() err_helpers['TBB'] = ("Intel TBB is required, try:\n" "$ conda/pip install tbb") err_helpers['OSX_OMP'] = ("Intel OpenMP is required, try:\n" "$ conda/pip install intel-openmp") requirements = [] def raise_with_hint(required): errmsg = "No threading layer could be loaded.\n%s" hintmsg = "HINT:\n%s" if len(required) == 0: hint = '' if len(required) == 1: hint = hintmsg % err_helpers[required[0]] if len(required) > 1: options = '\nOR\n'.join([err_helpers[x] for x in required]) hint = hintmsg % ("One of:\n%s" % options) raise ValueError(errmsg % hint) if t in namedbackends: # Try and load the specific named backend lib = select_known_backend(t) if not lib: # something is missing preventing a valid backend from # loading, set requirements for hinting if t == 'tbb': requirements.append('TBB') elif t == 'omp' and _IS_OSX: requirements.append('OSX_OMP') libname = t elif t in ['threadsafe', 'forksafe', 'safe']: # User wants a specific behaviour... available = ['tbb'] requirements.append('TBB') if t == "safe": # "safe" is TBB, which is fork and threadsafe everywhere pass elif t == "threadsafe": if _IS_OSX: requirements.append('OSX_OMP') # omp is threadsafe everywhere available.append('omp') elif t == "forksafe": # everywhere apart from linux (GNU OpenMP) has a guaranteed # forksafe OpenMP, as OpenMP has better performance, prefer # this to workqueue if not _IS_LINUX: available.append('omp') if _IS_OSX: requirements.append('OSX_OMP') # workqueue is forksafe everywhere available.append('workqueue') else: # unreachable msg = "No threading layer available for purpose %s" raise ValueError(msg % t) # select amongst available lib, libname = select_from_backends(available) elif t == 'default': # If default is supplied, try them in order, tbb, omp, # workqueue lib, libname = select_from_backends(namedbackends) if not lib: # set requirements for hinting requirements.append('TBB') if _IS_OSX: requirements.append('OSX_OMP') else: msg = "The threading layer requested '%s' is unknown to Numba." raise ValueError(msg % t) # No lib found, raise and hint if not lib: raise_with_hint(requirements) ll.add_symbol('numba_parallel_for', lib.parallel_for) ll.add_symbol('do_scheduling_signed', lib.do_scheduling_signed) ll.add_symbol('do_scheduling_unsigned', lib.do_scheduling_unsigned) launch_threads = CFUNCTYPE(None, c_int)(lib.launch_threads) launch_threads(NUM_THREADS) # set library name so it can be queried global _threading_layer _threading_layer = libname _is_initialized = True _DYLD_WORKAROUND_SET = 'NUMBA_DYLD_WORKAROUND' in os.environ _DYLD_WORKAROUND_VAL = int(os.environ.get('NUMBA_DYLD_WORKAROUND', 0)) if _DYLD_WORKAROUND_SET and _DYLD_WORKAROUND_VAL: _launch_threads()