/* * All or portions of this file Copyright (c) Amazon.com, Inc. or its affiliates or * its licensors. * * For complete copyright and license terms please see the LICENSE at the root of this * distribution (the "License"). All use of this software is governed by the License, * or, if provided, by the license below or the license accompanying this file. Do not * remove or modify any license notices. This file is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * */ #include #include #include #include #include namespace NumericalMethods::Eigenanalysis { VectorVariable CrossProduct(const VectorVariable& lhs, const VectorVariable& rhs) { AZ_Assert( lhs.GetDimension() == 3 && rhs.GetDimension() == 3, "VectorVariable dimensions invalid for cross product." ); return VectorVariable::CreateFromVector({ lhs[1] * rhs[2] - lhs[2] * rhs[1], lhs[2] * rhs[0] - lhs[0] * rhs[2], lhs[0] * rhs[1] - lhs[1] * rhs[0] }); } void ComputeOrthogonalComplement( const VectorVariable& vecW, VectorVariable& vecU, VectorVariable& vecV ) { // Robustly computes a right-handed orthogonal basis {vecU, vecV, vecW}. double invLength = 1.0; if (fabs(vecW[0]) > fabs(vecW[1])) { // The component of maximum absolute value is either vecW[0] or vecW[2]. invLength /= sqrt(vecW[0] * vecW[0] + vecW[2] * vecW[2]); vecU = VectorVariable::CreateFromVector({ -vecW[2] * invLength, 0.0, vecW[0] * invLength }); } else { // The component of maximum absolute value is either vecW[1] or vecW[2]. invLength /= sqrt(vecW[1] * vecW[1] + vecW[2] * vecW[2]); vecU = VectorVariable::CreateFromVector({ 0.0, vecW[2] * invLength, -vecW[1] * invLength }); } vecV = CrossProduct(vecW, vecU); } VectorVariable ComputeEigenvector0( double a00, double a01, double a02, double a11, double a12, double a22, double val ) { // By definition, (A−e∗I)v = 0, where e is the eigenvalue and v is the corresponding eigenvector to be found. // This condition implies that the rows (A−e∗I) must be perpendicular to v. This matrix must have rank 2, so two // rows will be linearly dependent. For those two rows, the cross product will be (nearly) zero. So to find v, // we can simply take the cross product of the two rows that maximize its magnitude. VectorVariable row0 = VectorVariable::CreateFromVector({ a00 - val, a01, a02 }); VectorVariable row1 = VectorVariable::CreateFromVector({ a01, a11 - val, a12 }); VectorVariable row2 = VectorVariable::CreateFromVector({ a02, a12, a22 - val }); VectorVariable r0xr1 = CrossProduct(row0, row1); VectorVariable r0xr2 = CrossProduct(row0, row2); VectorVariable r1xr2 = CrossProduct(row1, row2); double d0 = r0xr1.Dot(r0xr1); double d1 = r0xr2.Dot(r0xr2); double d2 = r1xr2.Dot(r1xr2); return d0 >= d1 && d0 >= d2 ? r0xr1 * (1.0 / sqrt(d0)) : d1 >= d0 && d1 >= d2 ? r0xr2 * (1.0 / sqrt(d1)) : r1xr2 * (1.0 / sqrt(d2)) ; } VectorVariable ComputeEigenvector1( double a00, double a01, double a02, double a11, double a12, double a22, double val, const VectorVariable& vec ) { // Real symmetric matrices must have orthogonal eigenvectors. Thus, if we generate two vectors vecU and vecV // orthogonal to the eigenvector vec already found, the remaining eigenvectors must be a circular combination // of vecU and vecW. This reduces the problem to a 2D system. For details see Eberly. VectorVariable vecU(3); VectorVariable vecV(3); ComputeOrthogonalComplement(vec, vecU, vecV); MatrixVariable matA(3, 3); matA.Element(0, 0) = a00; matA.Element(0, 1) = a01; matA.Element(0, 2) = a02; matA.Element(1, 0) = a01; matA.Element(1, 1) = a11; matA.Element(1, 2) = a12; matA.Element(2, 0) = a02; matA.Element(2, 1) = a12; matA.Element(2, 2) = a22; double m00 = vecU.Dot(matA * vecU) - val; double absM00 = fabs(m00); double m01 = vecU.Dot(matA * vecV); double absM01 = fabs(m01); double m11 = vecV.Dot(matA * vecV) - val; double absM11 = fabs(m11); auto discardComponentAndNormalize = [](double& factor, double& other) { other /= factor; factor = 1.0 / sqrt(1.0 + other * other); other *= factor; }; if (absM00 > absM11) { if (AZStd::max(absM00, absM01) > 0.0) { if (absM00 >= absM01) { discardComponentAndNormalize(m00, m01); } else { discardComponentAndNormalize(m01, m00); } return vecU * m01 - vecV * m00; } else { return vecU; } } else { if (AZStd::max(absM11, absM01) > 0.0) { if (absM11 >= absM01) { discardComponentAndNormalize(m11, m01); } else { discardComponentAndNormalize(m01, m11); } return vecU * m11 - vecV * m01; } else { return vecU; } } } VectorVariable ComputeEigenvector2(const VectorVariable& vec0, const VectorVariable& vec1) { return CrossProduct(vec0, vec1); } } // namespace NumericalMethods::Eigenanalysis