WARNING: This package has been deprecated. Please use the `SageMaker Training Toolkit `__ for model training and the `SageMaker Inference Toolkit `__ for model serving. =============================================================================================================================================================================================================================================================================== .. _header-n957: SageMaker Containers ==================== .. image:: https://img.shields.io/badge/code_style-black-000000.svg :target: https://github.com/python/black :alt: Code style: black SageMaker Containers gives you tools to create SageMaker-compatible Docker containers, and has additional tools for letting you create Frameworks (SageMaker-compatible Docker containers that can run arbitrary Python or shell scripts). Currently, this library is used by the `SageMaker Scikit-learn containers `__. .. contents:: .. _header-n1174: Getting Started =============== .. _header-n962: Creating a container using SageMaker Containers ----------------------------------------------- Here we'll demonstrate how to create a Docker image using SageMaker Containers in order to show the simplicity of using this library. Let's suppose we need to train a model with the following training script ``train.py`` using TF 2.0 in SageMaker: .. code:: python import tensorflow as tf mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=1) model.evaluate(x_test, y_test) .. _header-n965: The Dockerfile ~~~~~~~~~~~~~~ We then create a Dockerfile with our dependencies and define the program that will be executed in SageMaker: .. code:: docker FROM tensorflow/tensorflow:2.0.0a0 RUN pip install sagemaker-containers # Copies the training code inside the container COPY train.py /opt/ml/code/train.py # Defines train.py as script entry point ENV SAGEMAKER_PROGRAM train.py More documentation on how to build a Docker container can be found `here `__ .. _header-n968: Building the container ~~~~~~~~~~~~~~~~~~~~~~ We then build the Docker image using ``docker build``: .. code:: shell docker build -t tf-2.0 . .. _header-n971: Training with Local Mode ~~~~~~~~~~~~~~~~~~~~~~~~ We can use `Local Mode `__ to test the container locally: .. code:: python from sagemaker.estimator import Estimator estimator = Estimator(image_name='tf-2.0', role='SageMakerRole', train_instance_count=1, train_instance_type='local') estimator.fit() After using Local Mode, we can push the image to ECR and run a SageMaker training job. To see a complete example on how to create a container using SageMaker Container, including pushing it to ECR, see the example notebook `tensorflow_bring_your_own.ipynb `__. .. _header-n975: How a script is executed inside the container --------------------------------------------- The training script must be located under the folder ``/opt/ml/code`` and its relative path is defined in the environment variable ``SAGEMAKER_PROGRAM``. The following scripts are supported: - **Python scripts**: uses the Python interpreter for any script with .py suffix - **Shell scripts**: uses the Shell interpreter to execute any other script When training starts, the interpreter executes the entry point, from the example above: .. code:: python python train.py .. _header-n984: Mapping hyperparameters to script arguments ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Any hyperparameters provided by the training job will be passed by the interpreter to the entry point as script arguments. For example the training job hyperparameters: .. code:: python {"HyperParameters": {"batch-size": 256, "learning-rate": 0.0001, "communicator": "pure_nccl"}} Will be executed as: .. code:: shell ./user_script.sh --batch-size 256 --learning_rate 0.0001 --communicator pure_nccl The entry point is responsible for parsing these script arguments. For example, in a Python script: .. code:: python import argparse if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--learning-rate', type=int, default=1) parser.add_argument('--batch-size', type=int, default=64) parser.add_argument('--communicator', type=str) parser.add_argument('--frequency', type=int, default=20) args = parser.parse_args() ... .. _header-n991: Reading additional information from the container ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Very often, an entry point needs additional information from the container that is not available in ``hyperparameters``. SageMaker Containers writes this information as **environment variables** that are available inside the script. For example, the training job below includes the channels **training** and **testing**: .. code:: python from sagemaker.pytorch import PyTorch estimator = PyTorch(entry_point='train.py', ...) estimator.fit({'training': 's3://bucket/path/to/training/data', 'testing': 's3://bucket/path/to/testing/data'}) The environment variable ``SM_CHANNEL_{channel_name}`` provides the path were the channel is located: .. code:: python import argparse import os if __name__ == '__main__': parser = argparse.ArgumentParser() ... # reads input channels training and testing from the environment variables parser.add_argument('--training', type=str, default=os.environ['SM_CHANNEL_TRAINING']) parser.add_argument('--testing', type=str, default=os.environ['SM_CHANNEL_TESTING']) args = parser.parse_args() ... When training starts, SageMaker Containers will print all available environment variables. .. _header-n997: IMPORTANT ENVIRONMENT VARIABLES ------------------------------- These environment variables are those that you're likely to use when writing a user script. A full list of environment variables is given below. .. _header-n999: SM_MODEL_DIR ~~~~~~~~~~~~ .. code:: shell SM_MODEL_DIR=/opt/ml/model When the training job finishes, the container will be **deleted** including its file system with **exception** of the ``/opt/ml/model`` and ``/opt/ml/output`` folders. Use ``/opt/ml/model`` to save the model checkpoints. These checkpoints will be uploaded to the default S3 bucket. Usage example: .. code:: python import os # using it in argparse parser.add_argument('model_dir', type=str, default=os.environ['SM_MODEL_DIR']) # using it as variable model_dir = os.environ['SM_MODEL_DIR'] # saving checkpoints to model dir in chainer serializers.save_npz(os.path.join(os.environ['SM_MODEL_DIR'], 'model.npz'), model) For more information, see: `How Amazon SageMaker Processes Training Output `__. .. _header-n1004: SM_CHANNELS ~~~~~~~~~~~ .. code:: shell SM_CHANNELS='["testing","training"]' Contains the list of input data channels in the container. When you run training, you can partition your training data into different logical "channels". Depending on your problem, some common channel ideas are: "training", "testing", "evaluation" or "images" and "labels". ``SM_CHANNELS`` includes the name of the available channels in the container as a JSON encoded list. Usage example: .. code:: python import os import json # using it in argparse parser.add_argument('channel_names', default=json.loads(os.environ['SM_CHANNELS']))) # using it as variable channel_names = json.loads(os.environ['SM_CHANNELS'])) .. _header-n1010: SM_CHANNEL_{channel_name} ~~~~~~~~~~~~~~~~~~~~~~~~~ .. code:: shell SM_CHANNEL_TRAINING='/opt/ml/input/data/training' SM_CHANNEL_TESTING='/opt/ml/input/data/testing' Contains the directory where the channel named ``channel_name`` is located in the container. Usage examples: .. code:: python import os import json parser.add_argument('--train', type=str, default=os.environ['SM_CHANNEL_TRAINING']) parser.add_argument('--test', type=str, default=os.environ['SM_CHANNEL_TESTING']) args = parser.parse_args() train_file = np.load(os.path.join(args.train, 'train.npz')) test_file = np.load(os.path.join(args.test, 'test.npz')) .. _header-n1014: SM_HPS ~~~~~~ .. code:: shell SM_HPS='{"batch-size": "256", "learning-rate": "0.0001","communicator": "pure_nccl"}' Contains a JSON encoded dictionary with the user provided hyperparameters. Example usage: .. code:: python import os import json hyperparameters = json.loads(os.environ['SM_HPS'])) # {"batch-size": 256, "learning-rate": 0.0001, "communicator": "pure_nccl"} .. _header-n1020: SM_HP_{hyperparameter_name} ~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code:: shell SM_HP_LEARNING-RATE=0.0001 SM_HP_BATCH-SIZE=10000 SM_HP_COMMUNICATOR=pure_nccl Contains value of the hyperparameter named ``hyperparameter_name``. Usage examples: .. code:: python learning_rate = float(os.environ['SM_HP_LEARNING-RATE']) batch_size = int(os.environ['SM_HP_BATCH-SIZE']) comminicator = os.environ['SM_HP_COMMUNICATOR'] .. _header-n1026: SM_CURRENT_HOST ~~~~~~~~~~~~~~~ .. code:: shell SM_CURRENT_HOST=algo-1 The name of the current container on the container network. Usage example: .. code:: python import os # using it in argparse parser.add_argument('current_host', type=str, default=os.environ['SM_CURRENT_HOST']) # using it as variable current_host = os.environ['SM_CURRENT_HOST'] .. _header-n1032: SM_HOSTS ~~~~~~~~ .. code:: shell SM_HOSTS='["algo-1","algo-2"]' JSON encoded list containing all the hosts . Usage example: .. code:: python import os import json # using it in argparse parser.add_argument('hosts', type=str, default=json.loads(os.environ['SM_HOSTS'])) # using it as variable hosts = json.loads(os.environ['SM_HOSTS']) .. _header-n1038: SM_NUM_GPUS ~~~~~~~~~~~ .. code:: shell SM_NUM_GPUS=1 The number of gpus available in the current container. Usage example: .. code:: python import os # using it in argparse parser.add_argument('num_gpus', type=int, default=os.environ['SM_NUM_GPUS']) # using it as variable num_gpus = int(os.environ['SM_NUM_GPUS']) .. _header-n1042: List of provided environment variables by SageMaker Containers -------------------------------------------------------------- .. _header-n1043: SM_NUM_CPUS ~~~~~~~~~~~ .. code:: shell SM_NUM_CPUS=32 The number of cpus available in the current container. Usage example: .. code:: python # using it in argparse parser.add_argument('num_cpus', type=int, default=os.environ['SM_NUM_CPUS']) # using it as variable num_cpus = int(os.environ['SM_NUM_CPUS']) .. _header-n1047: SM_LOG_LEVEL ~~~~~~~~~~~~ .. code:: shell SM_LOG_LEVEL=20 The current log level in the container. Usage example: .. code:: python import os import logging logger = logging.getLogger(__name__) logger.setLevel(int(os.environ.get('SM_LOG_LEVEL', logging.INFO))) .. _header-n1053: SM_NETWORK_INTERFACE_NAME ~~~~~~~~~~~~~~~~~~~~~~~~~ .. code:: shell SM_NETWORK_INTERFACE_NAME=ethwe Name of the network interface, useful for distributed training. Usage example: .. code:: python # using it in argparse parser.add_argument('network_interface', type=str, default=os.environ['SM_NETWORK_INTERFACE_NAME']) # using it as variable network_interface = os.environ['SM_NETWORK_INTERFACE_NAME'] .. _header-n1057: SM_USER_ARGS ~~~~~~~~~~~~ .. code:: shell SM_USER_ARGS='["--batch-size","256","--learning_rate","0.0001","--communicator","pure_nccl"]' JSON encoded list with the script arguments provided for training. .. _header-n1060: SM_INPUT_DIR ~~~~~~~~~~~~ .. code:: shell SM_INPUT_DIR=/opt/ml/input/ The path of the input directory, e.g. ``/opt/ml/input/`` The input_dir, e.g. ``/opt/ml/input/``, is the directory where SageMaker saves input data and configuration files before and during training. .. _header-n1063: SM_INPUT_CONFIG_DIR ~~~~~~~~~~~~~~~~~~~ .. code:: shell SM_INPUT_CONFIG_DIR=/opt/ml/input/config The path of the input configuration directory, e.g. ``/opt/ml/input/config/``. The directory where standard SageMaker configuration files are located, e.g. ``/opt/ml/input/config/``. SageMaker training creates the following files in this folder when training starts: - ``hyperparameters.json``: Amazon SageMaker makes the hyperparameters in a CreateTrainingJob request available in this file. - ``inputdataconfig.json``: You specify data channel information in the InputDataConfig parameter in a CreateTrainingJob request. Amazon SageMaker makes this information available in this file. - ``resourceconfig.json``: name of the current host and all host containers in the training. More information about this files can be find here: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo.html .. _header-n1068: SM_OUTPUT_DATA_DIR ~~~~~~~~~~~~~~~~~~ .. code:: shell SM_OUTPUT_DATA_DIR=/opt/ml/output/data/algo-1 The dir to write non-model training artifacts (e.g. evaluation results) which will be retained by SageMaker, e.g. ``/opt/ml/output/data``. As your algorithm runs in a container, it generates output including the status of the training job and model and output artifacts. Your algorithm should write this information to the this directory. .. _header-n1072: SM_RESOURCE_CONFIG ~~~~~~~~~~~~~~~~~~ .. code:: shell SM_RESOURCE_CONFIG='{"current_host":"algo-1","hosts":["algo-1","algo-2"]}' The contents from ``/opt/ml/input/config/resourceconfig.json``. It has the following keys: - current_host: The name of the current container on the container network. For example, ``'algo-1'``. - hosts: The list of names of all containers on the container network, sorted lexicographically. For example, ``['algo-1', 'algo-2', 'algo-3']`` for a three-node cluster. For more information about ``resourceconfig.json``: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo.html#your-algorithms-training-algo-running-container-dist-training .. _header-n1081: SM_INPUT_DATA_CONFIG ~~~~~~~~~~~~~~~~~~~~ .. code:: shell SM_INPUT_DATA_CONFIG='{ "testing": { "RecordWrapperType": "None", "S3DistributionType": "FullyReplicated", "TrainingInputMode": "File" }, "training": { "RecordWrapperType": "None", "S3DistributionType": "FullyReplicated", "TrainingInputMode": "File" } }' Input data configuration from ``/opt/ml/input/config/inputdataconfig.json``. For more information about ``inpudataconfig.json``: https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-training-algo.html#your-algorithms-training-algo-running-container-dist-training .. _header-n1085: SM_TRAINING_ENV ~~~~~~~~~~~~~~~ .. code:: shell SM_TRAINING_ENV=' { "channel_input_dirs": { "test": "/opt/ml/input/data/testing", "train": "/opt/ml/input/data/training" }, "current_host": "algo-1", "framework_module": "sagemaker_chainer_container.training:main", "hosts": [ "algo-1", "algo-2" ], "hyperparameters": { "batch-size": 10000, "epochs": 1 }, "input_config_dir": "/opt/ml/input/config", "input_data_config": { "test": { "RecordWrapperType": "None", "S3DistributionType": "FullyReplicated", "TrainingInputMode": "File" }, "train": { "RecordWrapperType": "None", "S3DistributionType": "FullyReplicated", "TrainingInputMode": "File" } }, "input_dir": "/opt/ml/input", "job_name": "preprod-chainer-2018-05-31-06-27-15-511", "log_level": 20, "model_dir": "/opt/ml/model", "module_dir": "s3://sagemaker-{aws-region}-{aws-id}/{training-job-name}/source/sourcedir.tar.gz", "module_name": "user_script", "network_interface_name": "ethwe", "num_cpus": 4, "num_gpus": 1, "output_data_dir": "/opt/ml/output/data/algo-1", "output_dir": "/opt/ml/output", "resource_config": { "current_host": "algo-1", "hosts": [ "algo-1", "algo-2" ] } }' Provides the entire training information as a JSON-encoded dictionary.