# Copyright 2019-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from __future__ import absolute_import import os from sagemaker.mxnet.model import MXNetModel from sagemaker.predictor import StringDeserializer from integration import RESOURCE_PATH from utils import local_mode_utils HOSTING_RESOURCE_PATH = os.path.join(RESOURCE_PATH, 'dummy_hosting') MODEL_PATH = os.path.join(HOSTING_RESOURCE_PATH, 'code') SCRIPT_PATH = os.path.join(HOSTING_RESOURCE_PATH, 'code', 'dummy_hosting_module.py') # The image should use the model_fn and transform_fn defined # in the user-provided script when serving. def test_hosting(image_uri, sagemaker_local_session, local_instance_type): model = MXNetModel('file://{}'.format(MODEL_PATH), 'SageMakerRole', SCRIPT_PATH, image=image_uri, sagemaker_session=sagemaker_local_session) with local_mode_utils.lock(): try: predictor = model.deploy(1, local_instance_type) predictor.serializer = None predictor.deserializer = StringDeserializer() predictor.accept = None predictor.content_type = None input = 'some data' output = predictor.predict(input) assert input == output finally: predictor.delete_endpoint()