# Copyright 2019-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from __future__ import absolute_import import os import pytest from sagemaker import utils from sagemaker.mxnet import MXNetModel from integration import EI_SUPPORTED_REGIONS, RESOURCE_PATH from integration.sagemaker.timeout import timeout_and_delete_endpoint_by_name DEFAULT_HANDLER_PATH = os.path.join(RESOURCE_PATH, 'default_handlers') MODEL_PATH = os.path.join(DEFAULT_HANDLER_PATH, 'model.tar.gz') SCRIPT_PATH = os.path.join(DEFAULT_HANDLER_PATH, 'model', 'code', 'empty_module.py') @pytest.fixture(autouse=True) def skip_if_no_accelerator(accelerator_type): if accelerator_type is None: pytest.skip('Skipping because accelerator type was not provided') @pytest.fixture(autouse=True) def skip_if_non_supported_ei_region(region): if region not in EI_SUPPORTED_REGIONS: pytest.skip('EI is not supported in {}'.format(region)) @pytest.mark.skip_if_non_supported_ei_region() @pytest.mark.skip_if_no_accelerator() def test_elastic_inference(image_uri, sagemaker_session, instance_type, accelerator_type, framework_version): endpoint_name = utils.unique_name_from_base('test-mxnet-ei') with timeout_and_delete_endpoint_by_name(endpoint_name=endpoint_name, sagemaker_session=sagemaker_session, minutes=20): prefix = 'mxnet-serving/default-handlers' model_data = sagemaker_session.upload_data(path=MODEL_PATH, key_prefix=prefix) model = MXNetModel(model_data=model_data, entry_point=SCRIPT_PATH, role='SageMakerRole', image=image_uri, framework_version=framework_version, sagemaker_session=sagemaker_session) predictor = model.deploy(initial_instance_count=1, instance_type=instance_type, accelerator_type=accelerator_type, endpoint_name=endpoint_name) output = predictor.predict([[1, 2]]) assert [[4.9999918937683105]] == output