# Copyright 2018-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from __future__ import absolute_import import os import pytest from sagemaker.mxnet import MXNet from integration import MODEL_SUCCESS_FILES, RESOURCE_PATH from utils import local_mode_utils MNIST_PATH = os.path.join(RESOURCE_PATH, 'mnist') SCRIPT_PATH = os.path.join(MNIST_PATH, 'mnist.py') TRAIN_INPUT = 'file://{}'.format(os.path.join(MNIST_PATH, 'train')) TEST_INPUT = 'file://{}'.format(os.path.join(MNIST_PATH, 'test')) def test_single_machine(image_uri, sagemaker_local_session, local_instance_type, framework_version, tmpdir): mx = MXNet(entry_point=SCRIPT_PATH, role='SageMakerRole', train_instance_count=1, train_instance_type=local_instance_type, sagemaker_session=sagemaker_local_session, image_name=image_uri, framework_version=framework_version, output_path='file://{}'.format(tmpdir)) _train_and_assert_success(mx, str(tmpdir)) def test_distributed(image_uri, sagemaker_local_session, framework_version, processor, tmpdir): if processor == 'gpu': pytest.skip('Local Mode does not support distributed training on GPU.') mx = MXNet(entry_point=SCRIPT_PATH, role='SageMakerRole', train_instance_count=2, train_instance_type='local', sagemaker_session=sagemaker_local_session, image_name=image_uri, framework_version=framework_version, output_path='file://{}'.format(tmpdir), hyperparameters={'sagemaker_parameter_server_enabled': True}) _train_and_assert_success(mx, str(tmpdir)) def _train_and_assert_success(estimator, output_path): estimator.fit({'train': TRAIN_INPUT, 'test': TEST_INPUT}) for directory, files in MODEL_SUCCESS_FILES.items(): local_mode_utils.assert_output_files_exist(output_path, directory, files)