# Copyright 2019-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from __future__ import absolute_import import os from sagemaker import utils from sagemaker.mxnet.estimator import MXNet from sagemaker.tuner import ContinuousParameter, HyperparameterTuner from integration import RESOURCE_PATH from timeout import timeout DATA_PATH = os.path.join(RESOURCE_PATH, 'mnist') SCRIPT_PATH = os.path.join(DATA_PATH, 'mnist.py') def test_tuning(sagemaker_session, image_uri, instance_type): mx = MXNet(entry_point=SCRIPT_PATH, role='SageMakerRole', train_instance_count=1, train_instance_type=instance_type, sagemaker_session=sagemaker_session, image_name=image_uri, hyperparameters={'epochs': 1}) hyperparameter_ranges = {'learning-rate': ContinuousParameter(0.01, 0.2)} objective_metric_name = 'Validation-accuracy' metric_definitions = [ {'Name': 'Validation-accuracy', 'Regex': 'Validation-accuracy=([0-9\\.]+)'}] tuner = HyperparameterTuner(mx, objective_metric_name, hyperparameter_ranges, metric_definitions, max_jobs=2, max_parallel_jobs=2) with timeout(minutes=20): prefix = 'mxnet_mnist/{}'.format(utils.sagemaker_timestamp()) train_input = mx.sagemaker_session.upload_data(path=os.path.join(DATA_PATH, 'train'), key_prefix=prefix + '/train') test_input = mx.sagemaker_session.upload_data(path=os.path.join(DATA_PATH, 'test'), key_prefix=prefix + '/test') job_name = utils.unique_name_from_base('test-mxnet-image', max_length=32) tuner.fit({'train': train_input, 'test': test_input}, job_name=job_name) tuner.wait()