.. _sdp_api_docs: ############################################# Use the Library to Adapt Your Training Script ############################################# This section contains the SageMaker distributed data parallel API documentation. If you are a new user of this library, it is recommended you use this guide alongside `SageMaker's Distributed Data Parallel Library `_. The library provides framework-specific APIs for TensorFlow and PyTorch. Select the latest or one of the previous versions of the API documentation depending on the version of the library you use. .. important:: The distributed data parallel library supports training jobs using CUDA 11 or later. When you define a :class:`sagemaker.tensorflow.estimator.TensorFlow` or :class:`sagemaker.pytorch.estimator.PyTorch` estimator with the data parallel library enabled, SageMaker uses CUDA 11. When you extend or customize your own training image, you must use a base image with CUDA 11 or later. See `SageMaker Python SDK's distributed data parallel library APIs `_ for more information. For versions between 1.4.0 and 1.8.0 (Latest) ============================================= .. toctree:: :maxdepth: 1 latest/smd_data_parallel_pytorch latest/smd_data_parallel_tensorflow Documentation Archive ===================== To find the API documentation for the previous versions of the library, choose one of the following: .. toctree:: :maxdepth: 1 archives