# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. """Placeholder docstring""" from __future__ import absolute_import import logging from typing import Union, Optional from sagemaker import image_uris from sagemaker.amazon.amazon_estimator import AmazonAlgorithmEstimatorBase from sagemaker.amazon.common import RecordSerializer, RecordDeserializer from sagemaker.amazon.hyperparameter import Hyperparameter as hp # noqa from sagemaker.amazon.validation import gt from sagemaker.predictor import Predictor from sagemaker.model import Model from sagemaker.session import Session from sagemaker.utils import pop_out_unused_kwarg from sagemaker.vpc_utils import VPC_CONFIG_DEFAULT from sagemaker.workflow.entities import PipelineVariable from sagemaker.workflow import is_pipeline_variable logger = logging.getLogger(__name__) class LDA(AmazonAlgorithmEstimatorBase): """An unsupervised learning algorithm attempting to describe data as distinct categories. LDA is most commonly used to discover a user-specified number of topics shared by documents within a text corpus. Here each observation is a document, the features are the presence (or occurrence count) of each word, and the categories are the topics. """ repo_name: str = "lda" repo_version: str = "1" num_topics: hp = hp("num_topics", gt(0), "An integer greater than zero", int) alpha0: hp = hp("alpha0", gt(0), "A positive float", float) max_restarts: hp = hp("max_restarts", gt(0), "An integer greater than zero", int) max_iterations: hp = hp("max_iterations", gt(0), "An integer greater than zero", int) tol: hp = hp("tol", gt(0), "A positive float", float) def __init__( self, role: Optional[Union[str, PipelineVariable]] = None, instance_type: Optional[Union[str, PipelineVariable]] = None, num_topics: Optional[int] = None, alpha0: Optional[float] = None, max_restarts: Optional[int] = None, max_iterations: Optional[int] = None, tol: Optional[float] = None, **kwargs ): """Latent Dirichlet Allocation (LDA) is :class:`Estimator` used for unsupervised learning. Amazon SageMaker Latent Dirichlet Allocation is an unsupervised learning algorithm that attempts to describe a set of observations as a mixture of distinct categories. LDA is most commonly used to discover a user-specified number of topics shared by documents within a text corpus. Here each observation is a document, the features are the presence (or occurrence count) of each word, and the categories are the topics. This Estimator may be fit via calls to :meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.fit`. It requires Amazon :class:`~sagemaker.amazon.record_pb2.Record` protobuf serialized data to be stored in S3. There is an utility :meth:`~sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.record_set` that can be used to upload data to S3 and creates :class:`~sagemaker.amazon.amazon_estimator.RecordSet` to be passed to the `fit` call. To learn more about the Amazon protobuf Record class and how to prepare bulk data in this format, please consult AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html After this Estimator is fit, model data is stored in S3. The model may be deployed to an Amazon SageMaker Endpoint by invoking :meth:`~sagemaker.amazon.estimator.EstimatorBase.deploy`. As well as deploying an Endpoint, deploy returns a :class:`~sagemaker.amazon.lda.LDAPredictor` object that can be used for inference calls using the trained model hosted in the SageMaker Endpoint. LDA Estimators can be configured by setting hyperparameters. The available hyperparameters for LDA are documented below. For further information on the AWS LDA algorithm, please consult AWS technical documentation: https://docs.aws.amazon.com/sagemaker/latest/dg/lda.html Args: role (str): An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and APIs that create Amazon SageMaker endpoints use this role to access training data and model artifacts. After the endpoint is created, the inference code might use the IAM role, if accessing AWS resource. instance_type (str or PipelineVariable): Type of EC2 instance to use for training, for example, 'ml.c4.xlarge'. num_topics (int): The number of topics for LDA to find within the data. alpha0 (float): Optional. Initial guess for the concentration parameter max_restarts (int): Optional. The number of restarts to perform during the Alternating Least Squares (ALS) spectral decomposition phase of the algorithm. max_iterations (int): Optional. The maximum number of iterations to perform during the ALS phase of the algorithm. tol (float): Optional. Target error tolerance for the ALS phase of the algorithm. **kwargs: base class keyword argument values. .. tip:: You can find additional parameters for initializing this class at :class:`~sagemaker.estimator.amazon_estimator.AmazonAlgorithmEstimatorBase` and :class:`~sagemaker.estimator.EstimatorBase`. """ # this algorithm only supports single instance training instance_count = kwargs.pop("instance_count", 1) if is_pipeline_variable(instance_count) or instance_count != 1: logger.warning( "LDA only supports single instance training. Defaulting to 1 %s.", instance_type ) super(LDA, self).__init__(role, 1, instance_type, **kwargs) self.num_topics = num_topics self.alpha0 = alpha0 self.max_restarts = max_restarts self.max_iterations = max_iterations self.tol = tol def create_model(self, vpc_config_override=VPC_CONFIG_DEFAULT, **kwargs): """Return a :class:`~sagemaker.amazon.LDAModel`. It references the latest s3 model data produced by this Estimator. Args: vpc_config_override (dict[str, list[str]]): Optional override for VpcConfig set on the model. Default: use subnets and security groups from this Estimator. * 'Subnets' (list[str]): List of subnet ids. * 'SecurityGroupIds' (list[str]): List of security group ids. **kwargs: Additional kwargs passed to the LDAModel constructor. """ return LDAModel( self.model_data, self.role, sagemaker_session=self.sagemaker_session, vpc_config=self.get_vpc_config(vpc_config_override), **kwargs ) def _prepare_for_training( # pylint: disable=signature-differs self, records, mini_batch_size, job_name=None ): # mini_batch_size is required, prevent explicit calls with None """Placeholder docstring""" if mini_batch_size is None: raise ValueError("mini_batch_size must be set") super(LDA, self)._prepare_for_training( records, mini_batch_size=mini_batch_size, job_name=job_name ) class LDAPredictor(Predictor): """Transforms input vectors to lower-dimesional representations. The implementation of :meth:`~sagemaker.predictor.Predictor.predict` in this `Predictor` requires a numpy ``ndarray`` as input. The array should contain the same number of columns as the feature-dimension of the data used to fit the model this Predictor performs inference on. :meth:`predict()` returns a list of :class:`~sagemaker.amazon.record_pb2.Record` objects (assuming the default recordio-protobuf ``deserializer`` is used), one for each row in the input ``ndarray``. The lower dimension vector result is stored in the ``projection`` key of the ``Record.label`` field. """ def __init__( self, endpoint_name, sagemaker_session=None, serializer=RecordSerializer(), deserializer=RecordDeserializer(), ): """Creates "LDAPredictor" object to be used for transforming input vectors. Args: endpoint_name (str): Name of the Amazon SageMaker endpoint to which requests are sent. sagemaker_session (sagemaker.session.Session): A SageMaker Session object, used for SageMaker interactions (default: None). If not specified, one is created using the default AWS configuration chain. serializer (sagemaker.serializers.BaseSerializer): Optional. Default serializes input data to x-recordio-protobuf format. deserializer (sagemaker.deserializers.BaseDeserializer): Optional. Default parses responses from x-recordio-protobuf format. """ super(LDAPredictor, self).__init__( endpoint_name, sagemaker_session, serializer=serializer, deserializer=deserializer, ) class LDAModel(Model): """Reference LDA s3 model data. Calling :meth:`~sagemaker.model.Model.deploy` creates an Endpoint and return a Predictor that transforms vectors to a lower-dimensional representation. """ def __init__( self, model_data: Union[str, PipelineVariable], role: Optional[str] = None, sagemaker_session: Optional[Session] = None, **kwargs ): """Initialization for LDAModel class. Args: model_data (str or PipelineVariable): The S3 location of a SageMaker model data ``.tar.gz`` file. role (str): An AWS IAM role (either name or full ARN). The Amazon SageMaker training jobs and APIs that create Amazon SageMaker endpoints use this role to access training data and model artifacts. After the endpoint is created, the inference code might use the IAM role, if it needs to access an AWS resource. sagemaker_session (sagemaker.session.Session): Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one using the default AWS configuration chain. **kwargs: Keyword arguments passed to the ``FrameworkModel`` initializer. """ sagemaker_session = sagemaker_session or Session() image_uri = image_uris.retrieve( LDA.repo_name, sagemaker_session.boto_region_name, version=LDA.repo_version, ) pop_out_unused_kwarg("predictor_cls", kwargs, LDAPredictor.__name__) pop_out_unused_kwarg("image_uri", kwargs, image_uri) super(LDAModel, self).__init__( image_uri, model_data, role, predictor_cls=LDAPredictor, sagemaker_session=sagemaker_session, **kwargs )