# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. """Placeholder docstring""" from __future__ import absolute_import import logging from typing import Union, Optional, Dict from sagemaker import image_uris from sagemaker.deprecations import renamed_kwargs from sagemaker.estimator import Framework, _TrainingJob from sagemaker.fw_utils import ( framework_name_from_image, framework_version_from_tag, UploadedCode, ) from sagemaker.session import Session from sagemaker.vpc_utils import VPC_CONFIG_DEFAULT from sagemaker.workflow.entities import PipelineVariable from sagemaker.xgboost import defaults from sagemaker.xgboost.model import XGBoostModel from sagemaker.xgboost.utils import validate_py_version, validate_framework_version logger = logging.getLogger("sagemaker") class XGBoost(Framework): """Handle end-to-end training and deployment of XGBoost booster training. It can also handle training using customer provided XGBoost entry point script. """ _framework_name = defaults.XGBOOST_NAME def __init__( self, entry_point: Union[str, PipelineVariable], framework_version: str, source_dir: Optional[Union[str, PipelineVariable]] = None, hyperparameters: Optional[Dict[str, Union[str, PipelineVariable]]] = None, py_version: str = "py3", image_uri: Optional[Union[str, PipelineVariable]] = None, image_uri_region: Optional[str] = None, **kwargs ): """An estimator that executes an XGBoost-based SageMaker Training Job. The managed XGBoost environment is an Amazon-built Docker container thatexecutes functions defined in the supplied ``entry_point`` Python script. Training is started by calling :meth:`~sagemaker.amazon.estimator.Framework.fit` on this Estimator. After training is complete, calling :meth:`~sagemaker.amazon.estimator.Framework.deploy` creates a hosted SageMaker endpoint and returns an :class:`~sagemaker.amazon.xgboost.model.XGBoostPredictor` instance that can be used to perform inference against the hosted model. Technical documentation on preparing XGBoost scripts for SageMaker training and using the XGBoost Estimator is available on the project home-page: https://github.com/aws/sagemaker-python-sdk Args: entry_point (str or PipelineVariable): Path (absolute or relative) to the Python source file which should be executed as the entry point to training. If ``source_dir`` is specified, then ``entry_point`` must point to a file located at the root of ``source_dir``. framework_version (str): XGBoost version you want to use for executing your model training code. source_dir (str or PipelineVariable): Path (absolute, relative or an S3 URI) to a directory with any other training source code dependencies aside from the entry point file (default: None). If ``source_dir`` is an S3 URI, it must point to a tar.gz file. Structure within this directory are preserved when training on Amazon SageMaker. hyperparameters (dict[str, str] or dict[str, PipelineVariable]): Hyperparameters that will be used for training (default: None). The hyperparameters are made accessible as a dict[str, str] to the training code on SageMaker. For convenience, this accepts other types for keys and values, but ``str()`` will be called to convert them before training. py_version (str): Python version you want to use for executing your model training code (default: 'py3'). image_uri (str or PipelineVariable): If specified, the estimator will use this image for training and hosting, instead of selecting the appropriate SageMaker official image based on framework_version and py_version. It can be an ECR url or dockerhub image and tag. Examples: 123.dkr.ecr.us-west-2.amazonaws.com/my-custom-image:1.0 custom-image:latest. image_uri_region (str): If ``image_uri`` argument is None, the image uri associated with this object will be in this region. Default: region associated with SageMaker session. **kwargs: Additional kwargs passed to the :class:`~sagemaker.estimator.Framework` constructor. .. tip:: You can find additional parameters for initializing this class at :class:`~sagemaker.estimator.Framework` and :class:`~sagemaker.estimator.EstimatorBase`. """ instance_type = renamed_kwargs( "train_instance_type", "instance_type", kwargs.get("instance_type"), kwargs ) super(XGBoost, self).__init__( entry_point, source_dir, hyperparameters, image_uri=image_uri, **kwargs ) self.py_version = py_version self.framework_version = framework_version validate_py_version(py_version) validate_framework_version(framework_version) if image_uri is None: self.image_uri = image_uris.retrieve( self._framework_name, image_uri_region or self.sagemaker_session.boto_region_name, version=framework_version, py_version=self.py_version, instance_type=instance_type, image_scope="training", ) def create_model( self, model_server_workers=None, role=None, vpc_config_override=VPC_CONFIG_DEFAULT, entry_point=None, source_dir=None, dependencies=None, **kwargs ): """Create a SageMaker ``XGBoostModel`` object that can be deployed to an ``Endpoint``. Args: role (str): The ``ExecutionRoleArn`` IAM Role ARN for the ``Model``, which is also used during transform jobs. If not specified, the role from the Estimator will be used. model_server_workers (int): Optional. The number of worker processes used by the inference server. If None, server will use one worker per vCPU. vpc_config_override (dict[str, list[str]]): Optional override for VpcConfig set on the model. Default: use subnets and security groups from this Estimator. * 'Subnets' (list[str]): List of subnet ids. * 'SecurityGroupIds' (list[str]): List of security group ids. entry_point (str): Path (absolute or relative) to the local Python source file which should be executed as the entry point to training. If ``source_dir`` is specified, then ``entry_point`` must point to a file located at the root of ``source_dir``. If not specified, the training entry point is used. source_dir (str): Path (absolute or relative) to a directory with any other serving source code dependencies aside from the entry point file. If not specified, the model source directory from training is used. dependencies (list[str]): A list of paths to directories (absolute or relative) with any additional libraries that will be exported to the container. If not specified, the dependencies from training are used. This is not supported with "local code" in Local Mode. **kwargs: Additional kwargs passed to the :class:`~sagemaker.xgboost.model.XGBoostModel` constructor. Returns: sagemaker.xgboost.model.XGBoostModel: A SageMaker ``XGBoostModel`` object. See :func:`~sagemaker.xgboost.model.XGBoostModel` for full details. """ role = role or self.role kwargs["name"] = self._get_or_create_name(kwargs.get("name")) if "image_uri" not in kwargs: kwargs["image_uri"] = self.image_uri return XGBoostModel( self.model_data, role, entry_point or self._model_entry_point(), framework_version=self.framework_version, source_dir=(source_dir or self._model_source_dir()), container_log_level=self.container_log_level, code_location=self.code_location, py_version=self.py_version, model_server_workers=model_server_workers, sagemaker_session=self.sagemaker_session, vpc_config=self.get_vpc_config(vpc_config_override), dependencies=(dependencies or self.dependencies), **kwargs ) @classmethod def attach(cls, training_job_name, sagemaker_session=None, model_channel_name="model"): """Attach to an existing training job. Create an Estimator bound to an existing training job, each subclass is responsible to implement ``_prepare_init_params_from_job_description()`` as this method delegates the actual conversion of a training job description to the arguments that the class constructor expects. After attaching, if the training job has a Complete status, it can be ``deploy()`` ed to create a SageMaker Endpoint and return a ``Predictor``. If the training job is in progress, attach will block and display log messages from the training job, until the training job completes. Examples: >>> my_estimator.fit(wait=False) >>> training_job_name = my_estimator.latest_training_job.name Later on: >>> attached_estimator = Estimator.attach(training_job_name) >>> attached_estimator.deploy() Args: training_job_name (str): The name of the training job to attach to. sagemaker_session (sagemaker.session.Session): Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, the estimator creates one using the default AWS configuration chain. model_channel_name (str): Name of the channel where pre-trained model data will be downloaded (default: 'model'). If no channel with the same name exists in the training job, this option will be ignored. Returns: Instance of the calling ``Estimator`` Class with the attached training job. """ sagemaker_session = sagemaker_session or Session() job_details = sagemaker_session.sagemaker_client.describe_training_job( TrainingJobName=training_job_name ) init_params = cls._prepare_init_params_from_job_description(job_details, model_channel_name) tags = sagemaker_session.sagemaker_client.list_tags( ResourceArn=job_details["TrainingJobArn"] )["Tags"] init_params.update(tags=tags) estimator = cls(sagemaker_session=sagemaker_session, **init_params) estimator.latest_training_job = _TrainingJob( sagemaker_session=sagemaker_session, job_name=training_job_name ) estimator._current_job_name = estimator.latest_training_job.name estimator.latest_training_job.wait() # pylint gets confused thinking that estimator is an EstimatorBase instance, but it actually # is a Framework or any of its derived classes. We can safely ignore the no-member errors. estimator.uploaded_code = UploadedCode( estimator.source_dir, estimator.entry_point # pylint: disable=no-member ) return estimator @classmethod def _prepare_init_params_from_job_description(cls, job_details, model_channel_name=None): """Convert the job description to init params that can be handled by the class constructor Args: job_details: the returned job details from a describe_training_job API call. Returns: dictionary: The transformed init_params """ init_params = super(XGBoost, cls)._prepare_init_params_from_job_description(job_details) image_uri = init_params.pop("image_uri") framework, py_version, tag, _ = framework_name_from_image(image_uri) init_params["py_version"] = py_version if framework and framework != cls._framework_name: raise ValueError( "Training job: {} didn't use image for requested framework".format( job_details["TrainingJobName"] ) ) init_params["framework_version"] = framework_version_from_tag(tag) if not framework: # If we were unable to parse the framework name from the image it is not one of our # officially supported images, in this case just add the image to the init params. init_params["image_uri"] = image_uri return init_params