# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import absolute_import import pytest from mock import Mock from sagemaker.mxnet import MXNet SCRIPT = "resnet_cifar_10.py" TIMESTAMP = "2017-11-06-14:14:15.673" TIME = 1510006209.073025 BUCKET_NAME = "mybucket" INSTANCE_COUNT = 1 INSTANCE_TYPE_GPU = "ml.p2.xlarge" INSTANCE_TYPE_CPU = "ml.m4.xlarge" CPU_IMAGE_NAME = "sagemaker-mxnet-py2-cpu" GPU_IMAGE_NAME = "sagemaker-mxnet-py2-gpu" REGION = "us-west-2" IMAGE_URI_FORMAT_STRING = "520713654638.dkr.ecr.{}.amazonaws.com/{}:{}-{}-{}" REGION = "us-west-2" ROLE = "SagemakerRole" SOURCE_DIR = "s3://fefergerger" @pytest.fixture() def sagemaker_session(): boto_mock = Mock(name="boto_session", region_name=REGION) ims = Mock( name="sagemaker_session", boto_session=boto_mock, config=None, local_mode=False, region_name=REGION, ) ims.default_bucket = Mock(name="default_bucket", return_value=BUCKET_NAME) ims.expand_role = Mock(name="expand_role", return_value=ROLE) ims.sagemaker_client.describe_training_job = Mock( return_value={"ModelArtifacts": {"S3ModelArtifacts": "s3://m/m.tar.gz"}} ) return ims # Test that we pass all necessary fields from estimator to the session when we call deploy def test_deploy(sagemaker_session, tf_version): estimator = MXNet( entry_point=SCRIPT, source_dir=SOURCE_DIR, role=ROLE, framework_version=tf_version, train_instance_count=2, train_instance_type=INSTANCE_TYPE_GPU, sagemaker_session=sagemaker_session, base_job_name="test-cifar", ) estimator.fit("s3://mybucket/train") print("job succeeded: {}".format(estimator.latest_training_job.name)) estimator.deploy(initial_instance_count=1, instance_type=INSTANCE_TYPE_CPU) image = IMAGE_URI_FORMAT_STRING.format(REGION, CPU_IMAGE_NAME, tf_version, "cpu", "py2") sagemaker_session.create_model.assert_called_with( estimator._current_job_name, ROLE, { "Environment": { "SAGEMAKER_CONTAINER_LOG_LEVEL": "20", "SAGEMAKER_SUBMIT_DIRECTORY": SOURCE_DIR, "SAGEMAKER_REGION": REGION, "SAGEMAKER_PROGRAM": SCRIPT, }, "Image": image, "ModelDataUrl": "s3://m/m.tar.gz", }, )