# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import absolute_import import os from sagemaker import AutoML from tests.integ import DATA_DIR, AUTO_ML_DEFAULT_TIMEMOUT_MINUTES from tests.integ.timeout import timeout ROLE = "SageMakerRole" DATA_DIR = os.path.join(DATA_DIR, "automl", "data") PREFIX = "sagemaker/beta-automl-xgboost" TRAINING_DATA = os.path.join(DATA_DIR, "iris_training.csv") TARGET_ATTRIBUTE_NAME = "virginica" def create_auto_ml_job_if_not_exist(sagemaker_session): auto_ml_job_name = "python-sdk-integ-test-base-job" try: sagemaker_session.describe_auto_ml_job(job_name=auto_ml_job_name) except Exception as e: # noqa: F841 auto_ml = AutoML( role=ROLE, target_attribute_name=TARGET_ATTRIBUTE_NAME, sagemaker_session=sagemaker_session, max_candidates=3, ) inputs = sagemaker_session.upload_data(path=TRAINING_DATA, key_prefix=PREFIX + "/input") with timeout(minutes=AUTO_ML_DEFAULT_TIMEMOUT_MINUTES): auto_ml.fit(inputs, job_name=auto_ml_job_name, wait=True)