# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import absolute_import import json import time import pytest from sagemaker import KMeans, KMeansModel from sagemaker.serverless import ServerlessInferenceConfig from sagemaker.utils import unique_name_from_base from tests.integ import datasets, TRAINING_DEFAULT_TIMEOUT_MINUTES from tests.integ.timeout import timeout, timeout_and_delete_endpoint_by_name @pytest.fixture def training_set(): return datasets.one_p_mnist() def test_kmeans(sagemaker_session, cpu_instance_type, training_set): job_name = unique_name_from_base("kmeans") with timeout(minutes=TRAINING_DEFAULT_TIMEOUT_MINUTES): kmeans = KMeans( role="SageMakerRole", instance_count=1, instance_type=cpu_instance_type, k=10, sagemaker_session=sagemaker_session, ) kmeans.init_method = "random" kmeans.max_iterations = 1 kmeans.tol = 1 kmeans.num_trials = 1 kmeans.local_init_method = "kmeans++" kmeans.half_life_time_size = 1 kmeans.epochs = 1 kmeans.center_factor = 1 kmeans.eval_metrics = ["ssd", "msd"] assert kmeans.hyperparameters() == dict( init_method=kmeans.init_method, local_lloyd_max_iter=str(kmeans.max_iterations), local_lloyd_tol=str(kmeans.tol), local_lloyd_num_trials=str(kmeans.num_trials), local_lloyd_init_method=kmeans.local_init_method, half_life_time_size=str(kmeans.half_life_time_size), epochs=str(kmeans.epochs), extra_center_factor=str(kmeans.center_factor), k=str(kmeans.k), eval_metrics=json.dumps(kmeans.eval_metrics), force_dense="True", ) kmeans.fit(kmeans.record_set(training_set[0][:100]), job_name=job_name) with timeout_and_delete_endpoint_by_name(job_name, sagemaker_session): model = KMeansModel( kmeans.model_data, role="SageMakerRole", sagemaker_session=sagemaker_session ) predictor = model.deploy(1, cpu_instance_type, endpoint_name=job_name) result = predictor.predict(training_set[0][:10]) assert len(result) == 10 for record in result: assert record.label["closest_cluster"] is not None assert record.label["distance_to_cluster"] is not None predictor.delete_model() with pytest.raises(Exception) as exception: sagemaker_session.sagemaker_client.describe_model(ModelName=model.name) assert "Could not find model" in str(exception.value) def test_async_kmeans(sagemaker_session, cpu_instance_type, training_set): job_name = unique_name_from_base("kmeans") with timeout(minutes=5): kmeans = KMeans( role="SageMakerRole", instance_count=1, instance_type=cpu_instance_type, k=10, sagemaker_session=sagemaker_session, ) kmeans.init_method = "random" kmeans.max_iterations = 1 kmeans.tol = 1 kmeans.num_trials = 1 kmeans.local_init_method = "kmeans++" kmeans.half_life_time_size = 1 kmeans.epochs = 1 kmeans.center_factor = 1 assert kmeans.hyperparameters() == dict( init_method=kmeans.init_method, local_lloyd_max_iter=str(kmeans.max_iterations), local_lloyd_tol=str(kmeans.tol), local_lloyd_num_trials=str(kmeans.num_trials), local_lloyd_init_method=kmeans.local_init_method, half_life_time_size=str(kmeans.half_life_time_size), epochs=str(kmeans.epochs), extra_center_factor=str(kmeans.center_factor), k=str(kmeans.k), force_dense="True", ) kmeans.fit(kmeans.record_set(training_set[0][:100]), wait=False, job_name=job_name) print("Detached from training job. Will re-attach in 20 seconds") time.sleep(20) print("attaching now...") with timeout_and_delete_endpoint_by_name(job_name, sagemaker_session): estimator = KMeans.attach(training_job_name=job_name, sagemaker_session=sagemaker_session) model = KMeansModel( estimator.model_data, role="SageMakerRole", sagemaker_session=sagemaker_session ) predictor = model.deploy(1, cpu_instance_type, endpoint_name=job_name) result = predictor.predict(training_set[0][:10]) assert len(result) == 10 for record in result: assert record.label["closest_cluster"] is not None assert record.label["distance_to_cluster"] is not None def test_kmeans_serverless_inference(sagemaker_session, cpu_instance_type, training_set): job_name = unique_name_from_base("kmeans-serverless") with timeout(minutes=TRAINING_DEFAULT_TIMEOUT_MINUTES): kmeans = KMeans( role="SageMakerRole", instance_count=1, instance_type=cpu_instance_type, k=10, sagemaker_session=sagemaker_session, ) kmeans.init_method = "random" kmeans.max_iterations = 1 kmeans.tol = 1 kmeans.num_trials = 1 kmeans.local_init_method = "kmeans++" kmeans.half_life_time_size = 1 kmeans.epochs = 1 kmeans.center_factor = 1 kmeans.eval_metrics = ["ssd", "msd"] assert kmeans.hyperparameters() == dict( init_method=kmeans.init_method, local_lloyd_max_iter=str(kmeans.max_iterations), local_lloyd_tol=str(kmeans.tol), local_lloyd_num_trials=str(kmeans.num_trials), local_lloyd_init_method=kmeans.local_init_method, half_life_time_size=str(kmeans.half_life_time_size), epochs=str(kmeans.epochs), extra_center_factor=str(kmeans.center_factor), k=str(kmeans.k), eval_metrics=json.dumps(kmeans.eval_metrics), force_dense="True", ) kmeans.fit(kmeans.record_set(training_set[0][:100]), job_name=job_name) with timeout_and_delete_endpoint_by_name(job_name, sagemaker_session): model = KMeansModel( kmeans.model_data, role="SageMakerRole", sagemaker_session=sagemaker_session ) predictor = model.deploy( serverless_inference_config=ServerlessInferenceConfig(), endpoint_name=job_name ) result = predictor.predict(training_set[0][:10]) assert len(result) == 10 for record in result: assert record.label["closest_cluster"] is not None assert record.label["distance_to_cluster"] is not None predictor.delete_model() with pytest.raises(Exception) as exception: sagemaker_session.sagemaker_client.describe_model(ModelName=model.name) assert "Could not find model" in str(exception.value)