# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import absolute_import import logging import json import os import pytest from mock import MagicMock, Mock, patch from sagemaker.huggingface import HuggingFace, HuggingFaceModel from sagemaker.session_settings import SessionSettings from .huggingface_utils import get_full_gpu_image_uri, GPU_INSTANCE_TYPE, REGION DATA_DIR = os.path.join(os.path.dirname(__file__), "..", "data") SCRIPT_PATH = os.path.join(DATA_DIR, "dummy_script.py") SERVING_SCRIPT_FILE = "another_dummy_script.py" MODEL_DATA = "s3://some/data.tar.gz" ENV = {"DUMMY_ENV_VAR": "dummy_value"} TIMESTAMP = "2017-11-06-14:14:15.672" TIME = 1510006209.073025 BUCKET_NAME = "mybucket" INSTANCE_COUNT = 1 ACCELERATOR_TYPE = "ml.eia.medium" IMAGE_URI = "huggingface" JOB_NAME = "{}-{}".format(IMAGE_URI, TIMESTAMP) ROLE = "Dummy" ENDPOINT_DESC = {"EndpointConfigName": "test-endpoint"} ENDPOINT_CONFIG_DESC = {"ProductionVariants": [{"ModelName": "model-1"}, {"ModelName": "model-2"}]} LIST_TAGS_RESULT = {"Tags": [{"Key": "TagtestKey", "Value": "TagtestValue"}]} EXPERIMENT_CONFIG = { "ExperimentName": "exp", "TrialName": "trial", "TrialComponentDisplayName": "tc", "RunName": "rn", } @pytest.fixture(name="sagemaker_session") def fixture_sagemaker_session(): boto_mock = Mock(name="boto_session", region_name=REGION) session = Mock( name="sagemaker_session", boto_session=boto_mock, boto_region_name=REGION, config=None, local_mode=False, s3_resource=None, s3_client=None, settings=SessionSettings(), default_bucket_prefix=None, ) describe = {"ModelArtifacts": {"S3ModelArtifacts": "s3://m/m.tar.gz"}} session.sagemaker_client.describe_training_job = Mock(return_value=describe) session.sagemaker_client.describe_endpoint = Mock(return_value=ENDPOINT_DESC) session.sagemaker_client.describe_endpoint_config = Mock(return_value=ENDPOINT_CONFIG_DESC) session.sagemaker_client.list_tags = Mock(return_value=LIST_TAGS_RESULT) session.default_bucket = Mock(name="default_bucket", return_value=BUCKET_NAME) session.expand_role = Mock(name="expand_role", return_value=ROLE) # For tests which doesn't verify config file injection, operate with empty config session.sagemaker_config = {} return session def _huggingface_estimator( sagemaker_session, framework_version, pytorch_version, tensorflow_version, py_version, instance_type=None, base_job_name=None, **kwargs, ): return HuggingFace( entry_point=SCRIPT_PATH, framework_version=framework_version, py_version=py_version, pytorch_version=pytorch_version, tensorflow_version=tensorflow_version, role=ROLE, sagemaker_session=sagemaker_session, instance_count=INSTANCE_COUNT, instance_type=instance_type if instance_type else GPU_INSTANCE_TYPE, base_job_name=base_job_name, **kwargs, ) def _create_train_job(version, base_framework_version): return { "image_uri": get_full_gpu_image_uri(version, base_framework_version), "input_mode": "File", "input_config": [ { "ChannelName": "training", "DataSource": { "S3DataSource": { "S3DataDistributionType": "FullyReplicated", "S3DataType": "S3Prefix", } }, } ], "role": ROLE, "job_name": JOB_NAME, "output_config": {"S3OutputPath": "s3://{}/".format(BUCKET_NAME)}, "resource_config": { "InstanceType": GPU_INSTANCE_TYPE, "InstanceCount": 1, "VolumeSizeInGB": 30, }, "hyperparameters": { "sagemaker_program": json.dumps("dummy_script.py"), "sagemaker_container_log_level": str(logging.INFO), "sagemaker_job_name": json.dumps(JOB_NAME), "sagemaker_submit_directory": json.dumps( "s3://{}/{}/source/sourcedir.tar.gz".format(BUCKET_NAME, JOB_NAME) ), "sagemaker_region": '"us-east-1"', }, "stop_condition": {"MaxRuntimeInSeconds": 24 * 60 * 60}, "tags": None, "vpc_config": None, "metric_definitions": None, "environment": None, "retry_strategy": None, "experiment_config": None, "debugger_hook_config": { "CollectionConfigurations": [], "S3OutputPath": "s3://{}/".format(BUCKET_NAME), }, "profiler_config": { "DisableProfiler": False, "S3OutputPath": "s3://{}/".format(BUCKET_NAME), }, } def test_huggingface_invalid_args(): with pytest.raises(ValueError) as error: HuggingFace( py_version="py36", entry_point=SCRIPT_PATH, role=ROLE, instance_count=INSTANCE_COUNT, instance_type=GPU_INSTANCE_TYPE, transformers_version="4.2.1", pytorch_version="1.6", enable_sagemaker_metrics=False, ) assert "use either full version or shortened version" in str(error) with pytest.raises(ValueError) as error: HuggingFace( py_version="py36", entry_point=SCRIPT_PATH, role=ROLE, instance_count=INSTANCE_COUNT, instance_type=GPU_INSTANCE_TYPE, pytorch_version="1.6", enable_sagemaker_metrics=False, ) assert "transformers_version, and image_uri are both None." in str(error) with pytest.raises(ValueError) as error: HuggingFace( py_version="py36", entry_point=SCRIPT_PATH, role=ROLE, instance_count=INSTANCE_COUNT, instance_type=GPU_INSTANCE_TYPE, transformers_version="4.2.1", enable_sagemaker_metrics=False, ) assert "tensorflow_version and pytorch_version are both None." in str(error) with pytest.raises(ValueError) as error: HuggingFace( py_version="py36", entry_point=SCRIPT_PATH, role=ROLE, instance_count=INSTANCE_COUNT, instance_type=GPU_INSTANCE_TYPE, transformers_version="4.2", pytorch_version="1.6", tensorflow_version="2.3", enable_sagemaker_metrics=False, ) assert "tensorflow_version and pytorch_version are both not None." in str(error) @patch("sagemaker.utils.repack_model", MagicMock()) @patch("sagemaker.utils.create_tar_file", MagicMock()) @patch("sagemaker.estimator.name_from_base", return_value=JOB_NAME) @patch("time.time", return_value=TIME) def test_huggingface( time, name_from_base, sagemaker_session, huggingface_training_version, huggingface_pytorch_training_version, huggingface_pytorch_training_py_version, ): hf = HuggingFace( py_version=huggingface_pytorch_training_py_version, entry_point=SCRIPT_PATH, role=ROLE, sagemaker_session=sagemaker_session, instance_count=INSTANCE_COUNT, instance_type=GPU_INSTANCE_TYPE, transformers_version=huggingface_training_version, pytorch_version=huggingface_pytorch_training_version, enable_sagemaker_metrics=False, ) inputs = "s3://mybucket/train" hf.fit(inputs=inputs, experiment_config=EXPERIMENT_CONFIG) sagemaker_call_names = [c[0] for c in sagemaker_session.method_calls] assert sagemaker_call_names == ["train", "logs_for_job"] boto_call_names = [c[0] for c in sagemaker_session.boto_session.method_calls] assert boto_call_names == ["resource"] expected_train_args = _create_train_job( huggingface_training_version, f"pytorch{huggingface_pytorch_training_version}" ) expected_train_args["input_config"][0]["DataSource"]["S3DataSource"]["S3Uri"] = inputs expected_train_args["experiment_config"] = EXPERIMENT_CONFIG expected_train_args["enable_sagemaker_metrics"] = False actual_train_args = sagemaker_session.method_calls[0][2] assert actual_train_args == expected_train_args def test_huggingface_neuron( sagemaker_session, huggingface_neuron_latest_inference_pytorch_version, huggingface_neuron_latest_inference_transformer_version, huggingface_neuron_latest_inference_py_version, ): inputs = "s3://mybucket/train" huggingface_model = HuggingFaceModel( model_data=inputs, transformers_version=huggingface_neuron_latest_inference_transformer_version, role=ROLE, sagemaker_session=sagemaker_session, pytorch_version=huggingface_neuron_latest_inference_pytorch_version, py_version=huggingface_neuron_latest_inference_py_version, ) container = huggingface_model.prepare_container_def("ml.inf1.xlarge", inference_tool="neuron") assert container["Image"] def test_huggingface_neuronx( sagemaker_session, huggingface_neuronx_latest_inference_pytorch_version, huggingface_neuronx_latest_inference_transformer_version, huggingface_neuronx_latest_inference_py_version, ): inputs = "s3://mybucket/train" huggingface_model = HuggingFaceModel( model_data=inputs, transformers_version=huggingface_neuronx_latest_inference_transformer_version, role=ROLE, sagemaker_session=sagemaker_session, pytorch_version=huggingface_neuronx_latest_inference_pytorch_version, py_version=huggingface_neuronx_latest_inference_py_version, ) container = huggingface_model.prepare_container_def("ml.inf2.xlarge", inference_tool="neuronx") assert container["Image"] assert "sdk" in container["Image"] and "py" in container["Image"] def test_attach( sagemaker_session, huggingface_training_version, huggingface_pytorch_training_version, huggingface_pytorch_training_py_version, ): training_image = ( f"1.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:" f"{huggingface_pytorch_training_version}-" f"transformers{huggingface_training_version}-gpu-" f"{huggingface_pytorch_training_py_version}-cu110-ubuntu20.04" ) returned_job_description = { "AlgorithmSpecification": {"TrainingInputMode": "File", "TrainingImage": training_image}, "HyperParameters": { "sagemaker_submit_directory": '"s3://some/sourcedir.tar.gz"', "sagemaker_program": '"iris-dnn-classifier.py"', "sagemaker_s3_uri_training": '"sagemaker-3/integ-test-data/tf_iris"', "sagemaker_container_log_level": '"logging.INFO"', "sagemaker_job_name": '"neo"', "training_steps": "100", "sagemaker_region": '"us-east-1"', }, "RoleArn": "arn:aws:iam::366:role/SageMakerRole", "ResourceConfig": { "VolumeSizeInGB": 30, "InstanceCount": 1, "InstanceType": "ml.c4.xlarge", }, "StoppingCondition": {"MaxRuntimeInSeconds": 24 * 60 * 60}, "TrainingJobName": "neo", "TrainingJobStatus": "Completed", "TrainingJobArn": "arn:aws:sagemaker:us-west-2:336:training-job/neo", "OutputDataConfig": {"KmsKeyId": "", "S3OutputPath": "s3://place/output/neo"}, "TrainingJobOutput": {"S3TrainingJobOutput": "s3://here/output.tar.gz"}, } sagemaker_session.sagemaker_client.describe_training_job = Mock( name="describe_training_job", return_value=returned_job_description ) estimator = HuggingFace.attach(training_job_name="neo", sagemaker_session=sagemaker_session) assert estimator.latest_training_job.job_name == "neo" assert estimator.py_version == huggingface_pytorch_training_py_version assert estimator.framework_version == huggingface_training_version assert estimator.pytorch_version == huggingface_pytorch_training_version assert estimator.role == "arn:aws:iam::366:role/SageMakerRole" assert estimator.instance_count == 1 assert estimator.max_run == 24 * 60 * 60 assert estimator.input_mode == "File" assert estimator.base_job_name == "neo" assert estimator.output_path == "s3://place/output/neo" assert estimator.output_kms_key == "" assert estimator.hyperparameters()["training_steps"] == "100" assert estimator.source_dir == "s3://some/sourcedir.tar.gz" assert estimator.entry_point == "iris-dnn-classifier.py" def test_attach_custom_image(sagemaker_session): training_image = "pytorch:latest" returned_job_description = { "AlgorithmSpecification": {"TrainingInputMode": "File", "TrainingImage": training_image}, "HyperParameters": { "sagemaker_submit_directory": '"s3://some/sourcedir.tar.gz"', "sagemaker_program": '"iris-dnn-classifier.py"', "sagemaker_s3_uri_training": '"sagemaker-3/integ-test-data/tf_iris"', "sagemaker_container_log_level": '"logging.INFO"', "sagemaker_job_name": '"neo"', "training_steps": "100", "sagemaker_region": '"us-east-1"', }, "RoleArn": "arn:aws:iam::366:role/SageMakerRole", "ResourceConfig": { "VolumeSizeInGB": 30, "InstanceCount": 1, "InstanceType": "ml.c4.xlarge", }, "StoppingCondition": {"MaxRuntimeInSeconds": 24 * 60 * 60}, "TrainingJobName": "neo", "TrainingJobStatus": "Completed", "TrainingJobArn": "arn:aws:sagemaker:us-west-2:336:training-job/neo", "OutputDataConfig": {"KmsKeyId": "", "S3OutputPath": "s3://place/output/neo"}, "TrainingJobOutput": {"S3TrainingJobOutput": "s3://here/output.tar.gz"}, } sagemaker_session.sagemaker_client.describe_training_job = Mock( name="describe_training_job", return_value=returned_job_description ) estimator = HuggingFace.attach(training_job_name="neo", sagemaker_session=sagemaker_session) assert estimator.latest_training_job.job_name == "neo" assert estimator.image_uri == training_image