# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import absolute_import import pytest from mock import Mock, patch from sagemaker import image_uris from sagemaker.amazon.factorization_machines import ( FactorizationMachines, FactorizationMachinesPredictor, ) from sagemaker.amazon.amazon_estimator import RecordSet from sagemaker.session_settings import SessionSettings ROLE = "myrole" INSTANCE_COUNT = 1 INSTANCE_TYPE = "ml.c4.xlarge" NUM_FACTORS = 3 PREDICTOR_TYPE = "regressor" COMMON_TRAIN_ARGS = { "role": ROLE, "instance_count": INSTANCE_COUNT, "instance_type": INSTANCE_TYPE, } ALL_REQ_ARGS = dict( {"num_factors": NUM_FACTORS, "predictor_type": PREDICTOR_TYPE}, **COMMON_TRAIN_ARGS ) REGION = "us-west-2" BUCKET_NAME = "Some-Bucket" DESCRIBE_TRAINING_JOB_RESULT = {"ModelArtifacts": {"S3ModelArtifacts": "s3://bucket/model.tar.gz"}} ENDPOINT_DESC = {"EndpointConfigName": "test-endpoint"} ENDPOINT_CONFIG_DESC = {"ProductionVariants": [{"ModelName": "model-1"}, {"ModelName": "model-2"}]} @pytest.fixture() def sagemaker_session(): boto_mock = Mock(name="boto_session", region_name=REGION) sms = Mock( name="sagemaker_session", boto_session=boto_mock, region_name=REGION, config=None, local_mode=False, s3_client=False, s3_resource=False, settings=SessionSettings(), default_bucket_prefix=None, ) sms.boto_region_name = REGION sms.default_bucket = Mock(name="default_bucket", return_value=BUCKET_NAME) sms.sagemaker_client.describe_training_job = Mock( name="describe_training_job", return_value=DESCRIBE_TRAINING_JOB_RESULT ) sms.sagemaker_client.describe_endpoint = Mock(return_value=ENDPOINT_DESC) sms.sagemaker_client.describe_endpoint_config = Mock(return_value=ENDPOINT_CONFIG_DESC) # For tests which doesn't verify config file injection, operate with empty config sms.sagemaker_config = {} return sms def test_init_required_positional(sagemaker_session): fm = FactorizationMachines( "myrole", 1, "ml.c4.xlarge", 3, "regressor", sagemaker_session=sagemaker_session ) assert fm.role == "myrole" assert fm.instance_count == 1 assert fm.instance_type == "ml.c4.xlarge" assert fm.num_factors == 3 assert fm.predictor_type == "regressor" def test_init_required_named(sagemaker_session): fm = FactorizationMachines(sagemaker_session=sagemaker_session, **ALL_REQ_ARGS) assert fm.role == COMMON_TRAIN_ARGS["role"] assert fm.instance_count == COMMON_TRAIN_ARGS["instance_count"] assert fm.instance_type == COMMON_TRAIN_ARGS["instance_type"] assert fm.num_factors == ALL_REQ_ARGS["num_factors"] assert fm.predictor_type == ALL_REQ_ARGS["predictor_type"] def test_all_hyperparameters(sagemaker_session): fm = FactorizationMachines( sagemaker_session=sagemaker_session, epochs=2, clip_gradient=1e2, eps=0.001, rescale_grad=2.2, bias_lr=0.01, linear_lr=0.002, factors_lr=0.0003, bias_wd=0.0004, linear_wd=1.01, factors_wd=1.002, bias_init_method="uniform", bias_init_scale=0.1, bias_init_sigma=0.05, bias_init_value=2.002, linear_init_method="constant", linear_init_scale=0.02, linear_init_sigma=0.003, linear_init_value=1.0, factors_init_method="normal", factors_init_scale=1.101, factors_init_sigma=1.202, factors_init_value=1.303, **ALL_REQ_ARGS, ) assert fm.hyperparameters() == dict( num_factors=str(ALL_REQ_ARGS["num_factors"]), predictor_type=ALL_REQ_ARGS["predictor_type"], epochs="2", clip_gradient="100.0", eps="0.001", rescale_grad="2.2", bias_lr="0.01", linear_lr="0.002", factors_lr="0.0003", bias_wd="0.0004", linear_wd="1.01", factors_wd="1.002", bias_init_method="uniform", bias_init_scale="0.1", bias_init_sigma="0.05", bias_init_value="2.002", linear_init_method="constant", linear_init_scale="0.02", linear_init_sigma="0.003", linear_init_value="1.0", factors_init_method="normal", factors_init_scale="1.101", factors_init_sigma="1.202", factors_init_value="1.303", ) def test_image(sagemaker_session): fm = FactorizationMachines(sagemaker_session=sagemaker_session, **ALL_REQ_ARGS) assert image_uris.retrieve("factorization-machines", REGION) == fm.training_image_uri() @pytest.mark.parametrize( "required_hyper_parameters, value", [("num_factors", "string"), ("predictor_type", 0)] ) def test_required_hyper_parameters_type(sagemaker_session, required_hyper_parameters, value): with pytest.raises(ValueError): test_params = ALL_REQ_ARGS.copy() test_params[required_hyper_parameters] = value FactorizationMachines(sagemaker_session=sagemaker_session, **test_params) @pytest.mark.parametrize( "required_hyper_parameters, value", [("num_factors", 0), ("predictor_type", "string")] ) def test_required_hyper_parameters_value(sagemaker_session, required_hyper_parameters, value): with pytest.raises(ValueError): test_params = ALL_REQ_ARGS.copy() test_params[required_hyper_parameters] = value FactorizationMachines(sagemaker_session=sagemaker_session, **test_params) @pytest.mark.parametrize( "optional_hyper_parameters, value", [ ("epochs", "string"), ("clip_gradient", "string"), ("eps", "string"), ("rescale_grad", "string"), ("bias_lr", "string"), ("linear_lr", "string"), ("factors_lr", "string"), ("bias_wd", "string"), ("linear_wd", "string"), ("factors_wd", "string"), ("bias_init_method", 0), ("bias_init_scale", "string"), ("bias_init_sigma", "string"), ("bias_init_value", "string"), ("linear_init_method", 0), ("linear_init_scale", "string"), ("linear_init_sigma", "string"), ("linear_init_value", "string"), ("factors_init_method", 0), ("factors_init_scale", "string"), ("factors_init_sigma", "string"), ("factors_init_value", "string"), ], ) def test_optional_hyper_parameters_type(sagemaker_session, optional_hyper_parameters, value): with pytest.raises(ValueError): test_params = ALL_REQ_ARGS.copy() test_params.update({optional_hyper_parameters: value}) FactorizationMachines(sagemaker_session=sagemaker_session, **test_params) @pytest.mark.parametrize( "optional_hyper_parameters, value", [ ("epochs", 0), ("bias_lr", -1), ("linear_lr", -1), ("factors_lr", -1), ("bias_wd", -1), ("linear_wd", -1), ("factors_wd", -1), ("bias_init_method", "string"), ("bias_init_scale", -1), ("bias_init_sigma", -1), ("linear_init_method", "string"), ("linear_init_scale", -1), ("linear_init_sigma", -1), ("factors_init_method", "string"), ("factors_init_scale", -1), ("factors_init_sigma", -1), ], ) def test_optional_hyper_parameters_value(sagemaker_session, optional_hyper_parameters, value): with pytest.raises(ValueError): test_params = ALL_REQ_ARGS.copy() test_params.update({optional_hyper_parameters: value}) FactorizationMachines(sagemaker_session=sagemaker_session, **test_params) PREFIX = "prefix" FEATURE_DIM = 10 MINI_BATCH_SIZE = 200 @patch("sagemaker.amazon.amazon_estimator.AmazonAlgorithmEstimatorBase.fit") def test_call_fit(base_fit, sagemaker_session): fm = FactorizationMachines( base_job_name="fm", sagemaker_session=sagemaker_session, **ALL_REQ_ARGS ) data = RecordSet( "s3://{}/{}".format(BUCKET_NAME, PREFIX), num_records=1, feature_dim=FEATURE_DIM, channel="train", ) fm.fit(data, MINI_BATCH_SIZE) base_fit.assert_called_once() assert len(base_fit.call_args[0]) == 2 assert base_fit.call_args[0][0] == data assert base_fit.call_args[0][1] == MINI_BATCH_SIZE def test_prepare_for_training_no_mini_batch_size(sagemaker_session): fm = FactorizationMachines( base_job_name="fm", sagemaker_session=sagemaker_session, **ALL_REQ_ARGS ) data = RecordSet( "s3://{}/{}".format(BUCKET_NAME, PREFIX), num_records=1, feature_dim=FEATURE_DIM, channel="train", ) fm._prepare_for_training(data) def test_prepare_for_training_wrong_type_mini_batch_size(sagemaker_session): fm = FactorizationMachines( base_job_name="fm", sagemaker_session=sagemaker_session, **ALL_REQ_ARGS ) data = RecordSet( "s3://{}/{}".format(BUCKET_NAME, PREFIX), num_records=1, feature_dim=FEATURE_DIM, channel="train", ) with pytest.raises((TypeError, ValueError)): fm._prepare_for_training(data, "some") def test_prepare_for_training_wrong_value_mini_batch_size(sagemaker_session): fm = FactorizationMachines( base_job_name="fm", sagemaker_session=sagemaker_session, **ALL_REQ_ARGS ) data = RecordSet( "s3://{}/{}".format(BUCKET_NAME, PREFIX), num_records=1, feature_dim=FEATURE_DIM, channel="train", ) with pytest.raises(ValueError): fm._prepare_for_training(data, 0) def test_model_image(sagemaker_session): fm = FactorizationMachines(sagemaker_session=sagemaker_session, **ALL_REQ_ARGS) data = RecordSet( "s3://{}/{}".format(BUCKET_NAME, PREFIX), num_records=1, feature_dim=FEATURE_DIM, channel="train", ) fm.fit(data, MINI_BATCH_SIZE) model = fm.create_model() assert image_uris.retrieve("factorization-machines", REGION) == model.image_uri def test_predictor_type(sagemaker_session): fm = FactorizationMachines(sagemaker_session=sagemaker_session, **ALL_REQ_ARGS) data = RecordSet( "s3://{}/{}".format(BUCKET_NAME, PREFIX), num_records=1, feature_dim=FEATURE_DIM, channel="train", ) fm.fit(data, MINI_BATCH_SIZE) model = fm.create_model() predictor = model.deploy(1, INSTANCE_TYPE) assert isinstance(predictor, FactorizationMachinesPredictor) def test_predictor_custom_serialization(sagemaker_session): fm = FactorizationMachines(sagemaker_session=sagemaker_session, **ALL_REQ_ARGS) data = RecordSet( "s3://{}/{}".format(BUCKET_NAME, PREFIX), num_records=1, feature_dim=FEATURE_DIM, channel="train", ) fm.fit(data, MINI_BATCH_SIZE) model = fm.create_model() custom_serializer = Mock() custom_deserializer = Mock() predictor = model.deploy( 1, INSTANCE_TYPE, serializer=custom_serializer, deserializer=custom_deserializer, ) assert isinstance(predictor, FactorizationMachinesPredictor) assert predictor.serializer is custom_serializer assert predictor.deserializer is custom_deserializer