// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: AIAlgorithmsProtobufSchema/p.proto
package aialgorithms.proto2;
public final class RecordProto2 {
private RecordProto2() {}
public static void registerAllExtensions(
com.google.protobuf.ExtensionRegistry registry) {
}
public interface Float32TensorOrBuilder
extends com.google.protobuf.MessageOrBuilder {
// repeated float values = 1 [packed = true];
/**
* repeated float values = 1 [packed = true];
*
*
* Each value in the vector. If keys is empty this is treated as a * dense vector. **/ java.util.List
repeated float values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ int getValuesCount(); /** *
repeated float values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ float getValues(int index); // repeated uint64 keys = 2 [packed = true]; /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ java.util.List
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ int getKeysCount(); /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ long getKeys(int index); // repeated uint64 shape = 3 [packed = true]; /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ java.util.List
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ int getShapeCount(); /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ long getShape(int index); } /** * Protobuf type {@code aialgorithms.proto2.Float32Tensor} * *
* A sparse or dense rank-R tensor that stores data as doubles (float64). **/ public static final class Float32Tensor extends com.google.protobuf.GeneratedMessage implements Float32TensorOrBuilder { // Use Float32Tensor.newBuilder() to construct. private Float32Tensor(com.google.protobuf.GeneratedMessage.Builder> builder) { super(builder); this.unknownFields = builder.getUnknownFields(); } private Float32Tensor(boolean noInit) { this.unknownFields = com.google.protobuf.UnknownFieldSet.getDefaultInstance(); } private static final Float32Tensor defaultInstance; public static Float32Tensor getDefaultInstance() { return defaultInstance; } public Float32Tensor getDefaultInstanceForType() { return defaultInstance; } private final com.google.protobuf.UnknownFieldSet unknownFields; @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private Float32Tensor( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { initFields(); int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; default: { if (!parseUnknownField(input, unknownFields, extensionRegistry, tag)) { done = true; } break; } case 13: { if (!((mutable_bitField0_ & 0x00000001) == 0x00000001)) { values_ = new java.util.ArrayList
repeated float values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public java.util.List
repeated float values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public int getValuesCount() { return values_.size(); } /** *
repeated float values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public float getValues(int index) { return values_.get(index); } private int valuesMemoizedSerializedSize = -1; // repeated uint64 keys = 2 [packed = true]; public static final int KEYS_FIELD_NUMBER = 2; private java.util.List
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public java.util.List
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public int getKeysCount() { return keys_.size(); } /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public long getKeys(int index) { return keys_.get(index); } private int keysMemoizedSerializedSize = -1; // repeated uint64 shape = 3 [packed = true]; public static final int SHAPE_FIELD_NUMBER = 3; private java.util.List
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public java.util.List
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public int getShapeCount() { return shape_.size(); } /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public long getShape(int index) { return shape_.get(index); } private int shapeMemoizedSerializedSize = -1; private void initFields() { values_ = java.util.Collections.emptyList(); keys_ = java.util.Collections.emptyList(); shape_ = java.util.Collections.emptyList(); } private byte memoizedIsInitialized = -1; public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized != -1) return isInitialized == 1; memoizedIsInitialized = 1; return true; } public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { getSerializedSize(); if (getValuesList().size() > 0) { output.writeRawVarint32(10); output.writeRawVarint32(valuesMemoizedSerializedSize); } for (int i = 0; i < values_.size(); i++) { output.writeFloatNoTag(values_.get(i)); } if (getKeysList().size() > 0) { output.writeRawVarint32(18); output.writeRawVarint32(keysMemoizedSerializedSize); } for (int i = 0; i < keys_.size(); i++) { output.writeUInt64NoTag(keys_.get(i)); } if (getShapeList().size() > 0) { output.writeRawVarint32(26); output.writeRawVarint32(shapeMemoizedSerializedSize); } for (int i = 0; i < shape_.size(); i++) { output.writeUInt64NoTag(shape_.get(i)); } getUnknownFields().writeTo(output); } private int memoizedSerializedSize = -1; public int getSerializedSize() { int size = memoizedSerializedSize; if (size != -1) return size; size = 0; { int dataSize = 0; dataSize = 4 * getValuesList().size(); size += dataSize; if (!getValuesList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(dataSize); } valuesMemoizedSerializedSize = dataSize; } { int dataSize = 0; for (int i = 0; i < keys_.size(); i++) { dataSize += com.google.protobuf.CodedOutputStream .computeUInt64SizeNoTag(keys_.get(i)); } size += dataSize; if (!getKeysList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(dataSize); } keysMemoizedSerializedSize = dataSize; } { int dataSize = 0; for (int i = 0; i < shape_.size(); i++) { dataSize += com.google.protobuf.CodedOutputStream .computeUInt64SizeNoTag(shape_.get(i)); } size += dataSize; if (!getShapeList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(dataSize); } shapeMemoizedSerializedSize = dataSize; } size += getUnknownFields().getSerializedSize(); memoizedSerializedSize = size; return size; } private static final long serialVersionUID = 0L; @java.lang.Override protected java.lang.Object writeReplace() throws java.io.ObjectStreamException { return super.writeReplace(); } public static aialgorithms.proto2.RecordProto2.Float32Tensor parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static aialgorithms.proto2.RecordProto2.Float32Tensor parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static aialgorithms.proto2.RecordProto2.Float32Tensor parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static aialgorithms.proto2.RecordProto2.Float32Tensor parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static aialgorithms.proto2.RecordProto2.Float32Tensor parseFrom(java.io.InputStream input) throws java.io.IOException { return PARSER.parseFrom(input); } public static aialgorithms.proto2.RecordProto2.Float32Tensor parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return PARSER.parseFrom(input, extensionRegistry); } public static aialgorithms.proto2.RecordProto2.Float32Tensor parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return PARSER.parseDelimitedFrom(input); } public static aialgorithms.proto2.RecordProto2.Float32Tensor parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return PARSER.parseDelimitedFrom(input, extensionRegistry); } public static aialgorithms.proto2.RecordProto2.Float32Tensor parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return PARSER.parseFrom(input); } public static aialgorithms.proto2.RecordProto2.Float32Tensor parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return PARSER.parseFrom(input, extensionRegistry); } public static Builder newBuilder() { return Builder.create(); } public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder(aialgorithms.proto2.RecordProto2.Float32Tensor prototype) { return newBuilder().mergeFrom(prototype); } public Builder toBuilder() { return newBuilder(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessage.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * Protobuf type {@code aialgorithms.proto2.Float32Tensor} * *
* A sparse or dense rank-R tensor that stores data as doubles (float64). **/ public static final class Builder extends com.google.protobuf.GeneratedMessage.Builder
repeated float values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public java.util.List
repeated float values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public int getValuesCount() { return values_.size(); } /** *
repeated float values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public float getValues(int index) { return values_.get(index); } /** *
repeated float values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public Builder setValues( int index, float value) { ensureValuesIsMutable(); values_.set(index, value); onChanged(); return this; } /** *
repeated float values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public Builder addValues(float value) { ensureValuesIsMutable(); values_.add(value); onChanged(); return this; } /** *
repeated float values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public Builder addAllValues( java.lang.Iterable extends java.lang.Float> values) { ensureValuesIsMutable(); super.addAll(values, values_); onChanged(); return this; } /** *
repeated float values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public Builder clearValues() { values_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); return this; } // repeated uint64 keys = 2 [packed = true]; private java.util.List
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public java.util.List
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public int getKeysCount() { return keys_.size(); } /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public long getKeys(int index) { return keys_.get(index); } /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public Builder setKeys( int index, long value) { ensureKeysIsMutable(); keys_.set(index, value); onChanged(); return this; } /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public Builder addKeys(long value) { ensureKeysIsMutable(); keys_.add(value); onChanged(); return this; } /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public Builder addAllKeys( java.lang.Iterable extends java.lang.Long> values) { ensureKeysIsMutable(); super.addAll(values, keys_); onChanged(); return this; } /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public Builder clearKeys() { keys_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000002); onChanged(); return this; } // repeated uint64 shape = 3 [packed = true]; private java.util.List
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public java.util.List
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public int getShapeCount() { return shape_.size(); } /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public long getShape(int index) { return shape_.get(index); } /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public Builder setShape( int index, long value) { ensureShapeIsMutable(); shape_.set(index, value); onChanged(); return this; } /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public Builder addShape(long value) { ensureShapeIsMutable(); shape_.add(value); onChanged(); return this; } /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public Builder addAllShape( java.lang.Iterable extends java.lang.Long> values) { ensureShapeIsMutable(); super.addAll(values, shape_); onChanged(); return this; } /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public Builder clearShape() { shape_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000004); onChanged(); return this; } // @@protoc_insertion_point(builder_scope:aialgorithms.proto2.Float32Tensor) } static { defaultInstance = new Float32Tensor(true); defaultInstance.initFields(); } // @@protoc_insertion_point(class_scope:aialgorithms.proto2.Float32Tensor) } public interface Float64TensorOrBuilder extends com.google.protobuf.MessageOrBuilder { // repeated double values = 1 [packed = true]; /** *
repeated double values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ java.util.List
repeated double values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ int getValuesCount(); /** *
repeated double values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ double getValues(int index); // repeated uint64 keys = 2 [packed = true]; /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ java.util.List
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ int getKeysCount(); /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ long getKeys(int index); // repeated uint64 shape = 3 [packed = true]; /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ java.util.List
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ int getShapeCount(); /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ long getShape(int index); } /** * Protobuf type {@code aialgorithms.proto2.Float64Tensor} * *
* A sparse or dense rank-R tensor that stores data as doubles (float64). **/ public static final class Float64Tensor extends com.google.protobuf.GeneratedMessage implements Float64TensorOrBuilder { // Use Float64Tensor.newBuilder() to construct. private Float64Tensor(com.google.protobuf.GeneratedMessage.Builder> builder) { super(builder); this.unknownFields = builder.getUnknownFields(); } private Float64Tensor(boolean noInit) { this.unknownFields = com.google.protobuf.UnknownFieldSet.getDefaultInstance(); } private static final Float64Tensor defaultInstance; public static Float64Tensor getDefaultInstance() { return defaultInstance; } public Float64Tensor getDefaultInstanceForType() { return defaultInstance; } private final com.google.protobuf.UnknownFieldSet unknownFields; @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private Float64Tensor( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { initFields(); int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; default: { if (!parseUnknownField(input, unknownFields, extensionRegistry, tag)) { done = true; } break; } case 9: { if (!((mutable_bitField0_ & 0x00000001) == 0x00000001)) { values_ = new java.util.ArrayList
repeated double values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public java.util.List
repeated double values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public int getValuesCount() { return values_.size(); } /** *
repeated double values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public double getValues(int index) { return values_.get(index); } private int valuesMemoizedSerializedSize = -1; // repeated uint64 keys = 2 [packed = true]; public static final int KEYS_FIELD_NUMBER = 2; private java.util.List
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public java.util.List
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public int getKeysCount() { return keys_.size(); } /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public long getKeys(int index) { return keys_.get(index); } private int keysMemoizedSerializedSize = -1; // repeated uint64 shape = 3 [packed = true]; public static final int SHAPE_FIELD_NUMBER = 3; private java.util.List
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public java.util.List
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public int getShapeCount() { return shape_.size(); } /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public long getShape(int index) { return shape_.get(index); } private int shapeMemoizedSerializedSize = -1; private void initFields() { values_ = java.util.Collections.emptyList(); keys_ = java.util.Collections.emptyList(); shape_ = java.util.Collections.emptyList(); } private byte memoizedIsInitialized = -1; public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized != -1) return isInitialized == 1; memoizedIsInitialized = 1; return true; } public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { getSerializedSize(); if (getValuesList().size() > 0) { output.writeRawVarint32(10); output.writeRawVarint32(valuesMemoizedSerializedSize); } for (int i = 0; i < values_.size(); i++) { output.writeDoubleNoTag(values_.get(i)); } if (getKeysList().size() > 0) { output.writeRawVarint32(18); output.writeRawVarint32(keysMemoizedSerializedSize); } for (int i = 0; i < keys_.size(); i++) { output.writeUInt64NoTag(keys_.get(i)); } if (getShapeList().size() > 0) { output.writeRawVarint32(26); output.writeRawVarint32(shapeMemoizedSerializedSize); } for (int i = 0; i < shape_.size(); i++) { output.writeUInt64NoTag(shape_.get(i)); } getUnknownFields().writeTo(output); } private int memoizedSerializedSize = -1; public int getSerializedSize() { int size = memoizedSerializedSize; if (size != -1) return size; size = 0; { int dataSize = 0; dataSize = 8 * getValuesList().size(); size += dataSize; if (!getValuesList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(dataSize); } valuesMemoizedSerializedSize = dataSize; } { int dataSize = 0; for (int i = 0; i < keys_.size(); i++) { dataSize += com.google.protobuf.CodedOutputStream .computeUInt64SizeNoTag(keys_.get(i)); } size += dataSize; if (!getKeysList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(dataSize); } keysMemoizedSerializedSize = dataSize; } { int dataSize = 0; for (int i = 0; i < shape_.size(); i++) { dataSize += com.google.protobuf.CodedOutputStream .computeUInt64SizeNoTag(shape_.get(i)); } size += dataSize; if (!getShapeList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(dataSize); } shapeMemoizedSerializedSize = dataSize; } size += getUnknownFields().getSerializedSize(); memoizedSerializedSize = size; return size; } private static final long serialVersionUID = 0L; @java.lang.Override protected java.lang.Object writeReplace() throws java.io.ObjectStreamException { return super.writeReplace(); } public static aialgorithms.proto2.RecordProto2.Float64Tensor parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static aialgorithms.proto2.RecordProto2.Float64Tensor parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static aialgorithms.proto2.RecordProto2.Float64Tensor parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static aialgorithms.proto2.RecordProto2.Float64Tensor parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static aialgorithms.proto2.RecordProto2.Float64Tensor parseFrom(java.io.InputStream input) throws java.io.IOException { return PARSER.parseFrom(input); } public static aialgorithms.proto2.RecordProto2.Float64Tensor parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return PARSER.parseFrom(input, extensionRegistry); } public static aialgorithms.proto2.RecordProto2.Float64Tensor parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return PARSER.parseDelimitedFrom(input); } public static aialgorithms.proto2.RecordProto2.Float64Tensor parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return PARSER.parseDelimitedFrom(input, extensionRegistry); } public static aialgorithms.proto2.RecordProto2.Float64Tensor parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return PARSER.parseFrom(input); } public static aialgorithms.proto2.RecordProto2.Float64Tensor parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return PARSER.parseFrom(input, extensionRegistry); } public static Builder newBuilder() { return Builder.create(); } public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder(aialgorithms.proto2.RecordProto2.Float64Tensor prototype) { return newBuilder().mergeFrom(prototype); } public Builder toBuilder() { return newBuilder(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessage.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * Protobuf type {@code aialgorithms.proto2.Float64Tensor} * *
* A sparse or dense rank-R tensor that stores data as doubles (float64). **/ public static final class Builder extends com.google.protobuf.GeneratedMessage.Builder
repeated double values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public java.util.List
repeated double values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public int getValuesCount() { return values_.size(); } /** *
repeated double values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public double getValues(int index) { return values_.get(index); } /** *
repeated double values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public Builder setValues( int index, double value) { ensureValuesIsMutable(); values_.set(index, value); onChanged(); return this; } /** *
repeated double values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public Builder addValues(double value) { ensureValuesIsMutable(); values_.add(value); onChanged(); return this; } /** *
repeated double values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public Builder addAllValues( java.lang.Iterable extends java.lang.Double> values) { ensureValuesIsMutable(); super.addAll(values, values_); onChanged(); return this; } /** *
repeated double values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public Builder clearValues() { values_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); return this; } // repeated uint64 keys = 2 [packed = true]; private java.util.List
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public java.util.List
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public int getKeysCount() { return keys_.size(); } /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public long getKeys(int index) { return keys_.get(index); } /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public Builder setKeys( int index, long value) { ensureKeysIsMutable(); keys_.set(index, value); onChanged(); return this; } /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public Builder addKeys(long value) { ensureKeysIsMutable(); keys_.add(value); onChanged(); return this; } /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public Builder addAllKeys( java.lang.Iterable extends java.lang.Long> values) { ensureKeysIsMutable(); super.addAll(values, keys_); onChanged(); return this; } /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public Builder clearKeys() { keys_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000002); onChanged(); return this; } // repeated uint64 shape = 3 [packed = true]; private java.util.List
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public java.util.List
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public int getShapeCount() { return shape_.size(); } /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public long getShape(int index) { return shape_.get(index); } /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public Builder setShape( int index, long value) { ensureShapeIsMutable(); shape_.set(index, value); onChanged(); return this; } /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public Builder addShape(long value) { ensureShapeIsMutable(); shape_.add(value); onChanged(); return this; } /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public Builder addAllShape( java.lang.Iterable extends java.lang.Long> values) { ensureShapeIsMutable(); super.addAll(values, shape_); onChanged(); return this; } /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public Builder clearShape() { shape_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000004); onChanged(); return this; } // @@protoc_insertion_point(builder_scope:aialgorithms.proto2.Float64Tensor) } static { defaultInstance = new Float64Tensor(true); defaultInstance.initFields(); } // @@protoc_insertion_point(class_scope:aialgorithms.proto2.Float64Tensor) } public interface Int32TensorOrBuilder extends com.google.protobuf.MessageOrBuilder { // repeated int32 values = 1 [packed = true]; /** *
repeated int32 values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ java.util.List
repeated int32 values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ int getValuesCount(); /** *
repeated int32 values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ int getValues(int index); // repeated uint64 keys = 2 [packed = true]; /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ java.util.List
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ int getKeysCount(); /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ long getKeys(int index); // repeated uint64 shape = 3 [packed = true]; /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ java.util.List
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ int getShapeCount(); /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ long getShape(int index); } /** * Protobuf type {@code aialgorithms.proto2.Int32Tensor} * *
* A sparse or dense rank-R tensor that stores data as 32-bit ints (int32). **/ public static final class Int32Tensor extends com.google.protobuf.GeneratedMessage implements Int32TensorOrBuilder { // Use Int32Tensor.newBuilder() to construct. private Int32Tensor(com.google.protobuf.GeneratedMessage.Builder> builder) { super(builder); this.unknownFields = builder.getUnknownFields(); } private Int32Tensor(boolean noInit) { this.unknownFields = com.google.protobuf.UnknownFieldSet.getDefaultInstance(); } private static final Int32Tensor defaultInstance; public static Int32Tensor getDefaultInstance() { return defaultInstance; } public Int32Tensor getDefaultInstanceForType() { return defaultInstance; } private final com.google.protobuf.UnknownFieldSet unknownFields; @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private Int32Tensor( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { initFields(); int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; default: { if (!parseUnknownField(input, unknownFields, extensionRegistry, tag)) { done = true; } break; } case 8: { if (!((mutable_bitField0_ & 0x00000001) == 0x00000001)) { values_ = new java.util.ArrayList
repeated int32 values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public java.util.List
repeated int32 values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public int getValuesCount() { return values_.size(); } /** *
repeated int32 values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public int getValues(int index) { return values_.get(index); } private int valuesMemoizedSerializedSize = -1; // repeated uint64 keys = 2 [packed = true]; public static final int KEYS_FIELD_NUMBER = 2; private java.util.List
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public java.util.List
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public int getKeysCount() { return keys_.size(); } /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public long getKeys(int index) { return keys_.get(index); } private int keysMemoizedSerializedSize = -1; // repeated uint64 shape = 3 [packed = true]; public static final int SHAPE_FIELD_NUMBER = 3; private java.util.List
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public java.util.List
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public int getShapeCount() { return shape_.size(); } /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public long getShape(int index) { return shape_.get(index); } private int shapeMemoizedSerializedSize = -1; private void initFields() { values_ = java.util.Collections.emptyList(); keys_ = java.util.Collections.emptyList(); shape_ = java.util.Collections.emptyList(); } private byte memoizedIsInitialized = -1; public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized != -1) return isInitialized == 1; memoizedIsInitialized = 1; return true; } public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { getSerializedSize(); if (getValuesList().size() > 0) { output.writeRawVarint32(10); output.writeRawVarint32(valuesMemoizedSerializedSize); } for (int i = 0; i < values_.size(); i++) { output.writeInt32NoTag(values_.get(i)); } if (getKeysList().size() > 0) { output.writeRawVarint32(18); output.writeRawVarint32(keysMemoizedSerializedSize); } for (int i = 0; i < keys_.size(); i++) { output.writeUInt64NoTag(keys_.get(i)); } if (getShapeList().size() > 0) { output.writeRawVarint32(26); output.writeRawVarint32(shapeMemoizedSerializedSize); } for (int i = 0; i < shape_.size(); i++) { output.writeUInt64NoTag(shape_.get(i)); } getUnknownFields().writeTo(output); } private int memoizedSerializedSize = -1; public int getSerializedSize() { int size = memoizedSerializedSize; if (size != -1) return size; size = 0; { int dataSize = 0; for (int i = 0; i < values_.size(); i++) { dataSize += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(values_.get(i)); } size += dataSize; if (!getValuesList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(dataSize); } valuesMemoizedSerializedSize = dataSize; } { int dataSize = 0; for (int i = 0; i < keys_.size(); i++) { dataSize += com.google.protobuf.CodedOutputStream .computeUInt64SizeNoTag(keys_.get(i)); } size += dataSize; if (!getKeysList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(dataSize); } keysMemoizedSerializedSize = dataSize; } { int dataSize = 0; for (int i = 0; i < shape_.size(); i++) { dataSize += com.google.protobuf.CodedOutputStream .computeUInt64SizeNoTag(shape_.get(i)); } size += dataSize; if (!getShapeList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream .computeInt32SizeNoTag(dataSize); } shapeMemoizedSerializedSize = dataSize; } size += getUnknownFields().getSerializedSize(); memoizedSerializedSize = size; return size; } private static final long serialVersionUID = 0L; @java.lang.Override protected java.lang.Object writeReplace() throws java.io.ObjectStreamException { return super.writeReplace(); } public static aialgorithms.proto2.RecordProto2.Int32Tensor parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static aialgorithms.proto2.RecordProto2.Int32Tensor parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static aialgorithms.proto2.RecordProto2.Int32Tensor parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static aialgorithms.proto2.RecordProto2.Int32Tensor parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static aialgorithms.proto2.RecordProto2.Int32Tensor parseFrom(java.io.InputStream input) throws java.io.IOException { return PARSER.parseFrom(input); } public static aialgorithms.proto2.RecordProto2.Int32Tensor parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return PARSER.parseFrom(input, extensionRegistry); } public static aialgorithms.proto2.RecordProto2.Int32Tensor parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return PARSER.parseDelimitedFrom(input); } public static aialgorithms.proto2.RecordProto2.Int32Tensor parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return PARSER.parseDelimitedFrom(input, extensionRegistry); } public static aialgorithms.proto2.RecordProto2.Int32Tensor parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return PARSER.parseFrom(input); } public static aialgorithms.proto2.RecordProto2.Int32Tensor parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return PARSER.parseFrom(input, extensionRegistry); } public static Builder newBuilder() { return Builder.create(); } public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder(aialgorithms.proto2.RecordProto2.Int32Tensor prototype) { return newBuilder().mergeFrom(prototype); } public Builder toBuilder() { return newBuilder(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessage.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * Protobuf type {@code aialgorithms.proto2.Int32Tensor} * *
* A sparse or dense rank-R tensor that stores data as 32-bit ints (int32). **/ public static final class Builder extends com.google.protobuf.GeneratedMessage.Builder
repeated int32 values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public java.util.List
repeated int32 values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public int getValuesCount() { return values_.size(); } /** *
repeated int32 values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public int getValues(int index) { return values_.get(index); } /** *
repeated int32 values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public Builder setValues( int index, int value) { ensureValuesIsMutable(); values_.set(index, value); onChanged(); return this; } /** *
repeated int32 values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public Builder addValues(int value) { ensureValuesIsMutable(); values_.add(value); onChanged(); return this; } /** *
repeated int32 values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public Builder addAllValues( java.lang.Iterable extends java.lang.Integer> values) { ensureValuesIsMutable(); super.addAll(values, values_); onChanged(); return this; } /** *
repeated int32 values = 1 [packed = true];
*
* * Each value in the vector. If keys is empty this is treated as a * dense vector. **/ public Builder clearValues() { values_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); return this; } // repeated uint64 keys = 2 [packed = true]; private java.util.List
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public java.util.List
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public int getKeysCount() { return keys_.size(); } /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public long getKeys(int index) { return keys_.get(index); } /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public Builder setKeys( int index, long value) { ensureKeysIsMutable(); keys_.set(index, value); onChanged(); return this; } /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public Builder addKeys(long value) { ensureKeysIsMutable(); keys_.add(value); onChanged(); return this; } /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public Builder addAllKeys( java.lang.Iterable extends java.lang.Long> values) { ensureKeysIsMutable(); super.addAll(values, keys_); onChanged(); return this; } /** *
repeated uint64 keys = 2 [packed = true];
*
* * If not empty then the vector is treated as sparse with * each key specifying the location of the value in the sparse vector. **/ public Builder clearKeys() { keys_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000002); onChanged(); return this; } // repeated uint64 shape = 3 [packed = true]; private java.util.List
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public java.util.List
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public int getShapeCount() { return shape_.size(); } /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public long getShape(int index) { return shape_.get(index); } /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public Builder setShape( int index, long value) { ensureShapeIsMutable(); shape_.set(index, value); onChanged(); return this; } /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public Builder addShape(long value) { ensureShapeIsMutable(); shape_.add(value); onChanged(); return this; } /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public Builder addAllShape( java.lang.Iterable extends java.lang.Long> values) { ensureShapeIsMutable(); super.addAll(values, shape_); onChanged(); return this; } /** *
repeated uint64 shape = 3 [packed = true];
*
* * Optional shape which will allow the vector to represent a matrix. * e.g. if shape = [ 10, 20 ] then floor(keys[i] / 10) will give the row * and keys[i] % 20 will give the column. * This also supports n-dimensonal tensors. * NB. this must be specified if the tensor is sparse. **/ public Builder clearShape() { shape_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000004); onChanged(); return this; } // @@protoc_insertion_point(builder_scope:aialgorithms.proto2.Int32Tensor) } static { defaultInstance = new Int32Tensor(true); defaultInstance.initFields(); } // @@protoc_insertion_point(class_scope:aialgorithms.proto2.Int32Tensor) } public interface BytesOrBuilder extends com.google.protobuf.MessageOrBuilder { // repeated bytes value = 1; /** *
repeated bytes value = 1;
*/
java.util.Listrepeated bytes value = 1;
*/
int getValueCount();
/**
* repeated bytes value = 1;
*/
com.google.protobuf.ByteString getValue(int index);
// optional string content_type = 2;
/**
* optional string content_type = 2;
*
* * Stores the content type of the data if known. * This will allow the possibility of using decoders for common formats * in the future. **/ boolean hasContentType(); /** *
optional string content_type = 2;
*
* * Stores the content type of the data if known. * This will allow the possibility of using decoders for common formats * in the future. **/ java.lang.String getContentType(); /** *
optional string content_type = 2;
*
* * Stores the content type of the data if known. * This will allow the possibility of using decoders for common formats * in the future. **/ com.google.protobuf.ByteString getContentTypeBytes(); } /** * Protobuf type {@code aialgorithms.proto2.Bytes} * *
* Support for storing binary data for parsing in other ways (such as JPEG/etc). * This is an example of another type of value and may not immediately be supported. **/ public static final class Bytes extends com.google.protobuf.GeneratedMessage implements BytesOrBuilder { // Use Bytes.newBuilder() to construct. private Bytes(com.google.protobuf.GeneratedMessage.Builder> builder) { super(builder); this.unknownFields = builder.getUnknownFields(); } private Bytes(boolean noInit) { this.unknownFields = com.google.protobuf.UnknownFieldSet.getDefaultInstance(); } private static final Bytes defaultInstance; public static Bytes getDefaultInstance() { return defaultInstance; } public Bytes getDefaultInstanceForType() { return defaultInstance; } private final com.google.protobuf.UnknownFieldSet unknownFields; @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private Bytes( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { initFields(); int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; default: { if (!parseUnknownField(input, unknownFields, extensionRegistry, tag)) { done = true; } break; } case 10: { if (!((mutable_bitField0_ & 0x00000001) == 0x00000001)) { value_ = new java.util.ArrayList
repeated bytes value = 1;
*/
public java.util.Listrepeated bytes value = 1;
*/
public int getValueCount() {
return value_.size();
}
/**
* repeated bytes value = 1;
*/
public com.google.protobuf.ByteString getValue(int index) {
return value_.get(index);
}
// optional string content_type = 2;
public static final int CONTENT_TYPE_FIELD_NUMBER = 2;
private java.lang.Object contentType_;
/**
* optional string content_type = 2;
*
* * Stores the content type of the data if known. * This will allow the possibility of using decoders for common formats * in the future. **/ public boolean hasContentType() { return ((bitField0_ & 0x00000001) == 0x00000001); } /** *
optional string content_type = 2;
*
* * Stores the content type of the data if known. * This will allow the possibility of using decoders for common formats * in the future. **/ public java.lang.String getContentType() { java.lang.Object ref = contentType_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { contentType_ = s; } return s; } } /** *
optional string content_type = 2;
*
* * Stores the content type of the data if known. * This will allow the possibility of using decoders for common formats * in the future. **/ public com.google.protobuf.ByteString getContentTypeBytes() { java.lang.Object ref = contentType_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); contentType_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } private void initFields() { value_ = java.util.Collections.emptyList(); contentType_ = ""; } private byte memoizedIsInitialized = -1; public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized != -1) return isInitialized == 1; memoizedIsInitialized = 1; return true; } public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { getSerializedSize(); for (int i = 0; i < value_.size(); i++) { output.writeBytes(1, value_.get(i)); } if (((bitField0_ & 0x00000001) == 0x00000001)) { output.writeBytes(2, getContentTypeBytes()); } getUnknownFields().writeTo(output); } private int memoizedSerializedSize = -1; public int getSerializedSize() { int size = memoizedSerializedSize; if (size != -1) return size; size = 0; { int dataSize = 0; for (int i = 0; i < value_.size(); i++) { dataSize += com.google.protobuf.CodedOutputStream .computeBytesSizeNoTag(value_.get(i)); } size += dataSize; size += 1 * getValueList().size(); } if (((bitField0_ & 0x00000001) == 0x00000001)) { size += com.google.protobuf.CodedOutputStream .computeBytesSize(2, getContentTypeBytes()); } size += getUnknownFields().getSerializedSize(); memoizedSerializedSize = size; return size; } private static final long serialVersionUID = 0L; @java.lang.Override protected java.lang.Object writeReplace() throws java.io.ObjectStreamException { return super.writeReplace(); } public static aialgorithms.proto2.RecordProto2.Bytes parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static aialgorithms.proto2.RecordProto2.Bytes parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static aialgorithms.proto2.RecordProto2.Bytes parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static aialgorithms.proto2.RecordProto2.Bytes parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static aialgorithms.proto2.RecordProto2.Bytes parseFrom(java.io.InputStream input) throws java.io.IOException { return PARSER.parseFrom(input); } public static aialgorithms.proto2.RecordProto2.Bytes parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return PARSER.parseFrom(input, extensionRegistry); } public static aialgorithms.proto2.RecordProto2.Bytes parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return PARSER.parseDelimitedFrom(input); } public static aialgorithms.proto2.RecordProto2.Bytes parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return PARSER.parseDelimitedFrom(input, extensionRegistry); } public static aialgorithms.proto2.RecordProto2.Bytes parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return PARSER.parseFrom(input); } public static aialgorithms.proto2.RecordProto2.Bytes parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return PARSER.parseFrom(input, extensionRegistry); } public static Builder newBuilder() { return Builder.create(); } public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder(aialgorithms.proto2.RecordProto2.Bytes prototype) { return newBuilder().mergeFrom(prototype); } public Builder toBuilder() { return newBuilder(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessage.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * Protobuf type {@code aialgorithms.proto2.Bytes} * *
* Support for storing binary data for parsing in other ways (such as JPEG/etc). * This is an example of another type of value and may not immediately be supported. **/ public static final class Builder extends com.google.protobuf.GeneratedMessage.Builder
repeated bytes value = 1;
*/
public java.util.Listrepeated bytes value = 1;
*/
public int getValueCount() {
return value_.size();
}
/**
* repeated bytes value = 1;
*/
public com.google.protobuf.ByteString getValue(int index) {
return value_.get(index);
}
/**
* repeated bytes value = 1;
*/
public Builder setValue(
int index, com.google.protobuf.ByteString value) {
if (value == null) {
throw new NullPointerException();
}
ensureValueIsMutable();
value_.set(index, value);
onChanged();
return this;
}
/**
* repeated bytes value = 1;
*/
public Builder addValue(com.google.protobuf.ByteString value) {
if (value == null) {
throw new NullPointerException();
}
ensureValueIsMutable();
value_.add(value);
onChanged();
return this;
}
/**
* repeated bytes value = 1;
*/
public Builder addAllValue(
java.lang.Iterable extends com.google.protobuf.ByteString> values) {
ensureValueIsMutable();
super.addAll(values, value_);
onChanged();
return this;
}
/**
* repeated bytes value = 1;
*/
public Builder clearValue() {
value_ = java.util.Collections.emptyList();
bitField0_ = (bitField0_ & ~0x00000001);
onChanged();
return this;
}
// optional string content_type = 2;
private java.lang.Object contentType_ = "";
/**
* optional string content_type = 2;
*
* * Stores the content type of the data if known. * This will allow the possibility of using decoders for common formats * in the future. **/ public boolean hasContentType() { return ((bitField0_ & 0x00000002) == 0x00000002); } /** *
optional string content_type = 2;
*
* * Stores the content type of the data if known. * This will allow the possibility of using decoders for common formats * in the future. **/ public java.lang.String getContentType() { java.lang.Object ref = contentType_; if (!(ref instanceof java.lang.String)) { java.lang.String s = ((com.google.protobuf.ByteString) ref) .toStringUtf8(); contentType_ = s; return s; } else { return (java.lang.String) ref; } } /** *
optional string content_type = 2;
*
* * Stores the content type of the data if known. * This will allow the possibility of using decoders for common formats * in the future. **/ public com.google.protobuf.ByteString getContentTypeBytes() { java.lang.Object ref = contentType_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); contentType_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
optional string content_type = 2;
*
* * Stores the content type of the data if known. * This will allow the possibility of using decoders for common formats * in the future. **/ public Builder setContentType( java.lang.String value) { if (value == null) { throw new NullPointerException(); } bitField0_ |= 0x00000002; contentType_ = value; onChanged(); return this; } /** *
optional string content_type = 2;
*
* * Stores the content type of the data if known. * This will allow the possibility of using decoders for common formats * in the future. **/ public Builder clearContentType() { bitField0_ = (bitField0_ & ~0x00000002); contentType_ = getDefaultInstance().getContentType(); onChanged(); return this; } /** *
optional string content_type = 2;
*
* * Stores the content type of the data if known. * This will allow the possibility of using decoders for common formats * in the future. **/ public Builder setContentTypeBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } bitField0_ |= 0x00000002; contentType_ = value; onChanged(); return this; } // @@protoc_insertion_point(builder_scope:aialgorithms.proto2.Bytes) } static { defaultInstance = new Bytes(true); defaultInstance.initFields(); } // @@protoc_insertion_point(class_scope:aialgorithms.proto2.Bytes) } public interface ValueOrBuilder extends com.google.protobuf.MessageOrBuilder { // optional .aialgorithms.proto2.Float32Tensor float32_tensor = 2; /** *
optional .aialgorithms.proto2.Float32Tensor float32_tensor = 2;
*/
boolean hasFloat32Tensor();
/**
* optional .aialgorithms.proto2.Float32Tensor float32_tensor = 2;
*/
aialgorithms.proto2.RecordProto2.Float32Tensor getFloat32Tensor();
/**
* optional .aialgorithms.proto2.Float32Tensor float32_tensor = 2;
*/
aialgorithms.proto2.RecordProto2.Float32TensorOrBuilder getFloat32TensorOrBuilder();
// optional .aialgorithms.proto2.Float64Tensor float64_tensor = 3;
/**
* optional .aialgorithms.proto2.Float64Tensor float64_tensor = 3;
*/
boolean hasFloat64Tensor();
/**
* optional .aialgorithms.proto2.Float64Tensor float64_tensor = 3;
*/
aialgorithms.proto2.RecordProto2.Float64Tensor getFloat64Tensor();
/**
* optional .aialgorithms.proto2.Float64Tensor float64_tensor = 3;
*/
aialgorithms.proto2.RecordProto2.Float64TensorOrBuilder getFloat64TensorOrBuilder();
// optional .aialgorithms.proto2.Int32Tensor int32_tensor = 7;
/**
* optional .aialgorithms.proto2.Int32Tensor int32_tensor = 7;
*/
boolean hasInt32Tensor();
/**
* optional .aialgorithms.proto2.Int32Tensor int32_tensor = 7;
*/
aialgorithms.proto2.RecordProto2.Int32Tensor getInt32Tensor();
/**
* optional .aialgorithms.proto2.Int32Tensor int32_tensor = 7;
*/
aialgorithms.proto2.RecordProto2.Int32TensorOrBuilder getInt32TensorOrBuilder();
// optional .aialgorithms.proto2.Bytes bytes = 9;
/**
* optional .aialgorithms.proto2.Bytes bytes = 9;
*/
boolean hasBytes();
/**
* optional .aialgorithms.proto2.Bytes bytes = 9;
*/
aialgorithms.proto2.RecordProto2.Bytes getBytes();
/**
* optional .aialgorithms.proto2.Bytes bytes = 9;
*/
aialgorithms.proto2.RecordProto2.BytesOrBuilder getBytesOrBuilder();
}
/**
* Protobuf type {@code aialgorithms.proto2.Value}
*/
public static final class Value extends
com.google.protobuf.GeneratedMessage
implements ValueOrBuilder {
// Use Value.newBuilder() to construct.
private Value(com.google.protobuf.GeneratedMessage.Builder> builder) {
super(builder);
this.unknownFields = builder.getUnknownFields();
}
private Value(boolean noInit) { this.unknownFields = com.google.protobuf.UnknownFieldSet.getDefaultInstance(); }
private static final Value defaultInstance;
public static Value getDefaultInstance() {
return defaultInstance;
}
public Value getDefaultInstanceForType() {
return defaultInstance;
}
private final com.google.protobuf.UnknownFieldSet unknownFields;
@java.lang.Override
public final com.google.protobuf.UnknownFieldSet
getUnknownFields() {
return this.unknownFields;
}
private Value(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
initFields();
int mutable_bitField0_ = 0;
com.google.protobuf.UnknownFieldSet.Builder unknownFields =
com.google.protobuf.UnknownFieldSet.newBuilder();
try {
boolean done = false;
while (!done) {
int tag = input.readTag();
switch (tag) {
case 0:
done = true;
break;
default: {
if (!parseUnknownField(input, unknownFields,
extensionRegistry, tag)) {
done = true;
}
break;
}
case 18: {
aialgorithms.proto2.RecordProto2.Float32Tensor.Builder subBuilder = null;
if (((bitField0_ & 0x00000001) == 0x00000001)) {
subBuilder = float32Tensor_.toBuilder();
}
float32Tensor_ = input.readMessage(aialgorithms.proto2.RecordProto2.Float32Tensor.PARSER, extensionRegistry);
if (subBuilder != null) {
subBuilder.mergeFrom(float32Tensor_);
float32Tensor_ = subBuilder.buildPartial();
}
bitField0_ |= 0x00000001;
break;
}
case 26: {
aialgorithms.proto2.RecordProto2.Float64Tensor.Builder subBuilder = null;
if (((bitField0_ & 0x00000002) == 0x00000002)) {
subBuilder = float64Tensor_.toBuilder();
}
float64Tensor_ = input.readMessage(aialgorithms.proto2.RecordProto2.Float64Tensor.PARSER, extensionRegistry);
if (subBuilder != null) {
subBuilder.mergeFrom(float64Tensor_);
float64Tensor_ = subBuilder.buildPartial();
}
bitField0_ |= 0x00000002;
break;
}
case 58: {
aialgorithms.proto2.RecordProto2.Int32Tensor.Builder subBuilder = null;
if (((bitField0_ & 0x00000004) == 0x00000004)) {
subBuilder = int32Tensor_.toBuilder();
}
int32Tensor_ = input.readMessage(aialgorithms.proto2.RecordProto2.Int32Tensor.PARSER, extensionRegistry);
if (subBuilder != null) {
subBuilder.mergeFrom(int32Tensor_);
int32Tensor_ = subBuilder.buildPartial();
}
bitField0_ |= 0x00000004;
break;
}
case 74: {
aialgorithms.proto2.RecordProto2.Bytes.Builder subBuilder = null;
if (((bitField0_ & 0x00000008) == 0x00000008)) {
subBuilder = bytes_.toBuilder();
}
bytes_ = input.readMessage(aialgorithms.proto2.RecordProto2.Bytes.PARSER, extensionRegistry);
if (subBuilder != null) {
subBuilder.mergeFrom(bytes_);
bytes_ = subBuilder.buildPartial();
}
bitField0_ |= 0x00000008;
break;
}
}
}
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
throw e.setUnfinishedMessage(this);
} catch (java.io.IOException e) {
throw new com.google.protobuf.InvalidProtocolBufferException(
e.getMessage()).setUnfinishedMessage(this);
} finally {
this.unknownFields = unknownFields.build();
makeExtensionsImmutable();
}
}
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return aialgorithms.proto2.RecordProto2.internal_static_aialgorithms_proto2_Value_descriptor;
}
protected com.google.protobuf.GeneratedMessage.FieldAccessorTable
internalGetFieldAccessorTable() {
return aialgorithms.proto2.RecordProto2.internal_static_aialgorithms_proto2_Value_fieldAccessorTable
.ensureFieldAccessorsInitialized(
aialgorithms.proto2.RecordProto2.Value.class, aialgorithms.proto2.RecordProto2.Value.Builder.class);
}
public static com.google.protobuf.Parseroptional .aialgorithms.proto2.Float32Tensor float32_tensor = 2;
*/
public boolean hasFloat32Tensor() {
return ((bitField0_ & 0x00000001) == 0x00000001);
}
/**
* optional .aialgorithms.proto2.Float32Tensor float32_tensor = 2;
*/
public aialgorithms.proto2.RecordProto2.Float32Tensor getFloat32Tensor() {
return float32Tensor_;
}
/**
* optional .aialgorithms.proto2.Float32Tensor float32_tensor = 2;
*/
public aialgorithms.proto2.RecordProto2.Float32TensorOrBuilder getFloat32TensorOrBuilder() {
return float32Tensor_;
}
// optional .aialgorithms.proto2.Float64Tensor float64_tensor = 3;
public static final int FLOAT64_TENSOR_FIELD_NUMBER = 3;
private aialgorithms.proto2.RecordProto2.Float64Tensor float64Tensor_;
/**
* optional .aialgorithms.proto2.Float64Tensor float64_tensor = 3;
*/
public boolean hasFloat64Tensor() {
return ((bitField0_ & 0x00000002) == 0x00000002);
}
/**
* optional .aialgorithms.proto2.Float64Tensor float64_tensor = 3;
*/
public aialgorithms.proto2.RecordProto2.Float64Tensor getFloat64Tensor() {
return float64Tensor_;
}
/**
* optional .aialgorithms.proto2.Float64Tensor float64_tensor = 3;
*/
public aialgorithms.proto2.RecordProto2.Float64TensorOrBuilder getFloat64TensorOrBuilder() {
return float64Tensor_;
}
// optional .aialgorithms.proto2.Int32Tensor int32_tensor = 7;
public static final int INT32_TENSOR_FIELD_NUMBER = 7;
private aialgorithms.proto2.RecordProto2.Int32Tensor int32Tensor_;
/**
* optional .aialgorithms.proto2.Int32Tensor int32_tensor = 7;
*/
public boolean hasInt32Tensor() {
return ((bitField0_ & 0x00000004) == 0x00000004);
}
/**
* optional .aialgorithms.proto2.Int32Tensor int32_tensor = 7;
*/
public aialgorithms.proto2.RecordProto2.Int32Tensor getInt32Tensor() {
return int32Tensor_;
}
/**
* optional .aialgorithms.proto2.Int32Tensor int32_tensor = 7;
*/
public aialgorithms.proto2.RecordProto2.Int32TensorOrBuilder getInt32TensorOrBuilder() {
return int32Tensor_;
}
// optional .aialgorithms.proto2.Bytes bytes = 9;
public static final int BYTES_FIELD_NUMBER = 9;
private aialgorithms.proto2.RecordProto2.Bytes bytes_;
/**
* optional .aialgorithms.proto2.Bytes bytes = 9;
*/
public boolean hasBytes() {
return ((bitField0_ & 0x00000008) == 0x00000008);
}
/**
* optional .aialgorithms.proto2.Bytes bytes = 9;
*/
public aialgorithms.proto2.RecordProto2.Bytes getBytes() {
return bytes_;
}
/**
* optional .aialgorithms.proto2.Bytes bytes = 9;
*/
public aialgorithms.proto2.RecordProto2.BytesOrBuilder getBytesOrBuilder() {
return bytes_;
}
private void initFields() {
float32Tensor_ = aialgorithms.proto2.RecordProto2.Float32Tensor.getDefaultInstance();
float64Tensor_ = aialgorithms.proto2.RecordProto2.Float64Tensor.getDefaultInstance();
int32Tensor_ = aialgorithms.proto2.RecordProto2.Int32Tensor.getDefaultInstance();
bytes_ = aialgorithms.proto2.RecordProto2.Bytes.getDefaultInstance();
}
private byte memoizedIsInitialized = -1;
public final boolean isInitialized() {
byte isInitialized = memoizedIsInitialized;
if (isInitialized != -1) return isInitialized == 1;
memoizedIsInitialized = 1;
return true;
}
public void writeTo(com.google.protobuf.CodedOutputStream output)
throws java.io.IOException {
getSerializedSize();
if (((bitField0_ & 0x00000001) == 0x00000001)) {
output.writeMessage(2, float32Tensor_);
}
if (((bitField0_ & 0x00000002) == 0x00000002)) {
output.writeMessage(3, float64Tensor_);
}
if (((bitField0_ & 0x00000004) == 0x00000004)) {
output.writeMessage(7, int32Tensor_);
}
if (((bitField0_ & 0x00000008) == 0x00000008)) {
output.writeMessage(9, bytes_);
}
getUnknownFields().writeTo(output);
}
private int memoizedSerializedSize = -1;
public int getSerializedSize() {
int size = memoizedSerializedSize;
if (size != -1) return size;
size = 0;
if (((bitField0_ & 0x00000001) == 0x00000001)) {
size += com.google.protobuf.CodedOutputStream
.computeMessageSize(2, float32Tensor_);
}
if (((bitField0_ & 0x00000002) == 0x00000002)) {
size += com.google.protobuf.CodedOutputStream
.computeMessageSize(3, float64Tensor_);
}
if (((bitField0_ & 0x00000004) == 0x00000004)) {
size += com.google.protobuf.CodedOutputStream
.computeMessageSize(7, int32Tensor_);
}
if (((bitField0_ & 0x00000008) == 0x00000008)) {
size += com.google.protobuf.CodedOutputStream
.computeMessageSize(9, bytes_);
}
size += getUnknownFields().getSerializedSize();
memoizedSerializedSize = size;
return size;
}
private static final long serialVersionUID = 0L;
@java.lang.Override
protected java.lang.Object writeReplace()
throws java.io.ObjectStreamException {
return super.writeReplace();
}
public static aialgorithms.proto2.RecordProto2.Value parseFrom(
com.google.protobuf.ByteString data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static aialgorithms.proto2.RecordProto2.Value parseFrom(
com.google.protobuf.ByteString data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static aialgorithms.proto2.RecordProto2.Value parseFrom(byte[] data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static aialgorithms.proto2.RecordProto2.Value parseFrom(
byte[] data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static aialgorithms.proto2.RecordProto2.Value parseFrom(java.io.InputStream input)
throws java.io.IOException {
return PARSER.parseFrom(input);
}
public static aialgorithms.proto2.RecordProto2.Value parseFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return PARSER.parseFrom(input, extensionRegistry);
}
public static aialgorithms.proto2.RecordProto2.Value parseDelimitedFrom(java.io.InputStream input)
throws java.io.IOException {
return PARSER.parseDelimitedFrom(input);
}
public static aialgorithms.proto2.RecordProto2.Value parseDelimitedFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return PARSER.parseDelimitedFrom(input, extensionRegistry);
}
public static aialgorithms.proto2.RecordProto2.Value parseFrom(
com.google.protobuf.CodedInputStream input)
throws java.io.IOException {
return PARSER.parseFrom(input);
}
public static aialgorithms.proto2.RecordProto2.Value parseFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return PARSER.parseFrom(input, extensionRegistry);
}
public static Builder newBuilder() { return Builder.create(); }
public Builder newBuilderForType() { return newBuilder(); }
public static Builder newBuilder(aialgorithms.proto2.RecordProto2.Value prototype) {
return newBuilder().mergeFrom(prototype);
}
public Builder toBuilder() { return newBuilder(this); }
@java.lang.Override
protected Builder newBuilderForType(
com.google.protobuf.GeneratedMessage.BuilderParent parent) {
Builder builder = new Builder(parent);
return builder;
}
/**
* Protobuf type {@code aialgorithms.proto2.Value}
*/
public static final class Builder extends
com.google.protobuf.GeneratedMessage.Builderoptional .aialgorithms.proto2.Float32Tensor float32_tensor = 2;
*/
public boolean hasFloat32Tensor() {
return ((bitField0_ & 0x00000001) == 0x00000001);
}
/**
* optional .aialgorithms.proto2.Float32Tensor float32_tensor = 2;
*/
public aialgorithms.proto2.RecordProto2.Float32Tensor getFloat32Tensor() {
if (float32TensorBuilder_ == null) {
return float32Tensor_;
} else {
return float32TensorBuilder_.getMessage();
}
}
/**
* optional .aialgorithms.proto2.Float32Tensor float32_tensor = 2;
*/
public Builder setFloat32Tensor(aialgorithms.proto2.RecordProto2.Float32Tensor value) {
if (float32TensorBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
float32Tensor_ = value;
onChanged();
} else {
float32TensorBuilder_.setMessage(value);
}
bitField0_ |= 0x00000001;
return this;
}
/**
* optional .aialgorithms.proto2.Float32Tensor float32_tensor = 2;
*/
public Builder setFloat32Tensor(
aialgorithms.proto2.RecordProto2.Float32Tensor.Builder builderForValue) {
if (float32TensorBuilder_ == null) {
float32Tensor_ = builderForValue.build();
onChanged();
} else {
float32TensorBuilder_.setMessage(builderForValue.build());
}
bitField0_ |= 0x00000001;
return this;
}
/**
* optional .aialgorithms.proto2.Float32Tensor float32_tensor = 2;
*/
public Builder mergeFloat32Tensor(aialgorithms.proto2.RecordProto2.Float32Tensor value) {
if (float32TensorBuilder_ == null) {
if (((bitField0_ & 0x00000001) == 0x00000001) &&
float32Tensor_ != aialgorithms.proto2.RecordProto2.Float32Tensor.getDefaultInstance()) {
float32Tensor_ =
aialgorithms.proto2.RecordProto2.Float32Tensor.newBuilder(float32Tensor_).mergeFrom(value).buildPartial();
} else {
float32Tensor_ = value;
}
onChanged();
} else {
float32TensorBuilder_.mergeFrom(value);
}
bitField0_ |= 0x00000001;
return this;
}
/**
* optional .aialgorithms.proto2.Float32Tensor float32_tensor = 2;
*/
public Builder clearFloat32Tensor() {
if (float32TensorBuilder_ == null) {
float32Tensor_ = aialgorithms.proto2.RecordProto2.Float32Tensor.getDefaultInstance();
onChanged();
} else {
float32TensorBuilder_.clear();
}
bitField0_ = (bitField0_ & ~0x00000001);
return this;
}
/**
* optional .aialgorithms.proto2.Float32Tensor float32_tensor = 2;
*/
public aialgorithms.proto2.RecordProto2.Float32Tensor.Builder getFloat32TensorBuilder() {
bitField0_ |= 0x00000001;
onChanged();
return getFloat32TensorFieldBuilder().getBuilder();
}
/**
* optional .aialgorithms.proto2.Float32Tensor float32_tensor = 2;
*/
public aialgorithms.proto2.RecordProto2.Float32TensorOrBuilder getFloat32TensorOrBuilder() {
if (float32TensorBuilder_ != null) {
return float32TensorBuilder_.getMessageOrBuilder();
} else {
return float32Tensor_;
}
}
/**
* optional .aialgorithms.proto2.Float32Tensor float32_tensor = 2;
*/
private com.google.protobuf.SingleFieldBuilder<
aialgorithms.proto2.RecordProto2.Float32Tensor, aialgorithms.proto2.RecordProto2.Float32Tensor.Builder, aialgorithms.proto2.RecordProto2.Float32TensorOrBuilder>
getFloat32TensorFieldBuilder() {
if (float32TensorBuilder_ == null) {
float32TensorBuilder_ = new com.google.protobuf.SingleFieldBuilder<
aialgorithms.proto2.RecordProto2.Float32Tensor, aialgorithms.proto2.RecordProto2.Float32Tensor.Builder, aialgorithms.proto2.RecordProto2.Float32TensorOrBuilder>(
float32Tensor_,
getParentForChildren(),
isClean());
float32Tensor_ = null;
}
return float32TensorBuilder_;
}
// optional .aialgorithms.proto2.Float64Tensor float64_tensor = 3;
private aialgorithms.proto2.RecordProto2.Float64Tensor float64Tensor_ = aialgorithms.proto2.RecordProto2.Float64Tensor.getDefaultInstance();
private com.google.protobuf.SingleFieldBuilder<
aialgorithms.proto2.RecordProto2.Float64Tensor, aialgorithms.proto2.RecordProto2.Float64Tensor.Builder, aialgorithms.proto2.RecordProto2.Float64TensorOrBuilder> float64TensorBuilder_;
/**
* optional .aialgorithms.proto2.Float64Tensor float64_tensor = 3;
*/
public boolean hasFloat64Tensor() {
return ((bitField0_ & 0x00000002) == 0x00000002);
}
/**
* optional .aialgorithms.proto2.Float64Tensor float64_tensor = 3;
*/
public aialgorithms.proto2.RecordProto2.Float64Tensor getFloat64Tensor() {
if (float64TensorBuilder_ == null) {
return float64Tensor_;
} else {
return float64TensorBuilder_.getMessage();
}
}
/**
* optional .aialgorithms.proto2.Float64Tensor float64_tensor = 3;
*/
public Builder setFloat64Tensor(aialgorithms.proto2.RecordProto2.Float64Tensor value) {
if (float64TensorBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
float64Tensor_ = value;
onChanged();
} else {
float64TensorBuilder_.setMessage(value);
}
bitField0_ |= 0x00000002;
return this;
}
/**
* optional .aialgorithms.proto2.Float64Tensor float64_tensor = 3;
*/
public Builder setFloat64Tensor(
aialgorithms.proto2.RecordProto2.Float64Tensor.Builder builderForValue) {
if (float64TensorBuilder_ == null) {
float64Tensor_ = builderForValue.build();
onChanged();
} else {
float64TensorBuilder_.setMessage(builderForValue.build());
}
bitField0_ |= 0x00000002;
return this;
}
/**
* optional .aialgorithms.proto2.Float64Tensor float64_tensor = 3;
*/
public Builder mergeFloat64Tensor(aialgorithms.proto2.RecordProto2.Float64Tensor value) {
if (float64TensorBuilder_ == null) {
if (((bitField0_ & 0x00000002) == 0x00000002) &&
float64Tensor_ != aialgorithms.proto2.RecordProto2.Float64Tensor.getDefaultInstance()) {
float64Tensor_ =
aialgorithms.proto2.RecordProto2.Float64Tensor.newBuilder(float64Tensor_).mergeFrom(value).buildPartial();
} else {
float64Tensor_ = value;
}
onChanged();
} else {
float64TensorBuilder_.mergeFrom(value);
}
bitField0_ |= 0x00000002;
return this;
}
/**
* optional .aialgorithms.proto2.Float64Tensor float64_tensor = 3;
*/
public Builder clearFloat64Tensor() {
if (float64TensorBuilder_ == null) {
float64Tensor_ = aialgorithms.proto2.RecordProto2.Float64Tensor.getDefaultInstance();
onChanged();
} else {
float64TensorBuilder_.clear();
}
bitField0_ = (bitField0_ & ~0x00000002);
return this;
}
/**
* optional .aialgorithms.proto2.Float64Tensor float64_tensor = 3;
*/
public aialgorithms.proto2.RecordProto2.Float64Tensor.Builder getFloat64TensorBuilder() {
bitField0_ |= 0x00000002;
onChanged();
return getFloat64TensorFieldBuilder().getBuilder();
}
/**
* optional .aialgorithms.proto2.Float64Tensor float64_tensor = 3;
*/
public aialgorithms.proto2.RecordProto2.Float64TensorOrBuilder getFloat64TensorOrBuilder() {
if (float64TensorBuilder_ != null) {
return float64TensorBuilder_.getMessageOrBuilder();
} else {
return float64Tensor_;
}
}
/**
* optional .aialgorithms.proto2.Float64Tensor float64_tensor = 3;
*/
private com.google.protobuf.SingleFieldBuilder<
aialgorithms.proto2.RecordProto2.Float64Tensor, aialgorithms.proto2.RecordProto2.Float64Tensor.Builder, aialgorithms.proto2.RecordProto2.Float64TensorOrBuilder>
getFloat64TensorFieldBuilder() {
if (float64TensorBuilder_ == null) {
float64TensorBuilder_ = new com.google.protobuf.SingleFieldBuilder<
aialgorithms.proto2.RecordProto2.Float64Tensor, aialgorithms.proto2.RecordProto2.Float64Tensor.Builder, aialgorithms.proto2.RecordProto2.Float64TensorOrBuilder>(
float64Tensor_,
getParentForChildren(),
isClean());
float64Tensor_ = null;
}
return float64TensorBuilder_;
}
// optional .aialgorithms.proto2.Int32Tensor int32_tensor = 7;
private aialgorithms.proto2.RecordProto2.Int32Tensor int32Tensor_ = aialgorithms.proto2.RecordProto2.Int32Tensor.getDefaultInstance();
private com.google.protobuf.SingleFieldBuilder<
aialgorithms.proto2.RecordProto2.Int32Tensor, aialgorithms.proto2.RecordProto2.Int32Tensor.Builder, aialgorithms.proto2.RecordProto2.Int32TensorOrBuilder> int32TensorBuilder_;
/**
* optional .aialgorithms.proto2.Int32Tensor int32_tensor = 7;
*/
public boolean hasInt32Tensor() {
return ((bitField0_ & 0x00000004) == 0x00000004);
}
/**
* optional .aialgorithms.proto2.Int32Tensor int32_tensor = 7;
*/
public aialgorithms.proto2.RecordProto2.Int32Tensor getInt32Tensor() {
if (int32TensorBuilder_ == null) {
return int32Tensor_;
} else {
return int32TensorBuilder_.getMessage();
}
}
/**
* optional .aialgorithms.proto2.Int32Tensor int32_tensor = 7;
*/
public Builder setInt32Tensor(aialgorithms.proto2.RecordProto2.Int32Tensor value) {
if (int32TensorBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
int32Tensor_ = value;
onChanged();
} else {
int32TensorBuilder_.setMessage(value);
}
bitField0_ |= 0x00000004;
return this;
}
/**
* optional .aialgorithms.proto2.Int32Tensor int32_tensor = 7;
*/
public Builder setInt32Tensor(
aialgorithms.proto2.RecordProto2.Int32Tensor.Builder builderForValue) {
if (int32TensorBuilder_ == null) {
int32Tensor_ = builderForValue.build();
onChanged();
} else {
int32TensorBuilder_.setMessage(builderForValue.build());
}
bitField0_ |= 0x00000004;
return this;
}
/**
* optional .aialgorithms.proto2.Int32Tensor int32_tensor = 7;
*/
public Builder mergeInt32Tensor(aialgorithms.proto2.RecordProto2.Int32Tensor value) {
if (int32TensorBuilder_ == null) {
if (((bitField0_ & 0x00000004) == 0x00000004) &&
int32Tensor_ != aialgorithms.proto2.RecordProto2.Int32Tensor.getDefaultInstance()) {
int32Tensor_ =
aialgorithms.proto2.RecordProto2.Int32Tensor.newBuilder(int32Tensor_).mergeFrom(value).buildPartial();
} else {
int32Tensor_ = value;
}
onChanged();
} else {
int32TensorBuilder_.mergeFrom(value);
}
bitField0_ |= 0x00000004;
return this;
}
/**
* optional .aialgorithms.proto2.Int32Tensor int32_tensor = 7;
*/
public Builder clearInt32Tensor() {
if (int32TensorBuilder_ == null) {
int32Tensor_ = aialgorithms.proto2.RecordProto2.Int32Tensor.getDefaultInstance();
onChanged();
} else {
int32TensorBuilder_.clear();
}
bitField0_ = (bitField0_ & ~0x00000004);
return this;
}
/**
* optional .aialgorithms.proto2.Int32Tensor int32_tensor = 7;
*/
public aialgorithms.proto2.RecordProto2.Int32Tensor.Builder getInt32TensorBuilder() {
bitField0_ |= 0x00000004;
onChanged();
return getInt32TensorFieldBuilder().getBuilder();
}
/**
* optional .aialgorithms.proto2.Int32Tensor int32_tensor = 7;
*/
public aialgorithms.proto2.RecordProto2.Int32TensorOrBuilder getInt32TensorOrBuilder() {
if (int32TensorBuilder_ != null) {
return int32TensorBuilder_.getMessageOrBuilder();
} else {
return int32Tensor_;
}
}
/**
* optional .aialgorithms.proto2.Int32Tensor int32_tensor = 7;
*/
private com.google.protobuf.SingleFieldBuilder<
aialgorithms.proto2.RecordProto2.Int32Tensor, aialgorithms.proto2.RecordProto2.Int32Tensor.Builder, aialgorithms.proto2.RecordProto2.Int32TensorOrBuilder>
getInt32TensorFieldBuilder() {
if (int32TensorBuilder_ == null) {
int32TensorBuilder_ = new com.google.protobuf.SingleFieldBuilder<
aialgorithms.proto2.RecordProto2.Int32Tensor, aialgorithms.proto2.RecordProto2.Int32Tensor.Builder, aialgorithms.proto2.RecordProto2.Int32TensorOrBuilder>(
int32Tensor_,
getParentForChildren(),
isClean());
int32Tensor_ = null;
}
return int32TensorBuilder_;
}
// optional .aialgorithms.proto2.Bytes bytes = 9;
private aialgorithms.proto2.RecordProto2.Bytes bytes_ = aialgorithms.proto2.RecordProto2.Bytes.getDefaultInstance();
private com.google.protobuf.SingleFieldBuilder<
aialgorithms.proto2.RecordProto2.Bytes, aialgorithms.proto2.RecordProto2.Bytes.Builder, aialgorithms.proto2.RecordProto2.BytesOrBuilder> bytesBuilder_;
/**
* optional .aialgorithms.proto2.Bytes bytes = 9;
*/
public boolean hasBytes() {
return ((bitField0_ & 0x00000008) == 0x00000008);
}
/**
* optional .aialgorithms.proto2.Bytes bytes = 9;
*/
public aialgorithms.proto2.RecordProto2.Bytes getBytes() {
if (bytesBuilder_ == null) {
return bytes_;
} else {
return bytesBuilder_.getMessage();
}
}
/**
* optional .aialgorithms.proto2.Bytes bytes = 9;
*/
public Builder setBytes(aialgorithms.proto2.RecordProto2.Bytes value) {
if (bytesBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
bytes_ = value;
onChanged();
} else {
bytesBuilder_.setMessage(value);
}
bitField0_ |= 0x00000008;
return this;
}
/**
* optional .aialgorithms.proto2.Bytes bytes = 9;
*/
public Builder setBytes(
aialgorithms.proto2.RecordProto2.Bytes.Builder builderForValue) {
if (bytesBuilder_ == null) {
bytes_ = builderForValue.build();
onChanged();
} else {
bytesBuilder_.setMessage(builderForValue.build());
}
bitField0_ |= 0x00000008;
return this;
}
/**
* optional .aialgorithms.proto2.Bytes bytes = 9;
*/
public Builder mergeBytes(aialgorithms.proto2.RecordProto2.Bytes value) {
if (bytesBuilder_ == null) {
if (((bitField0_ & 0x00000008) == 0x00000008) &&
bytes_ != aialgorithms.proto2.RecordProto2.Bytes.getDefaultInstance()) {
bytes_ =
aialgorithms.proto2.RecordProto2.Bytes.newBuilder(bytes_).mergeFrom(value).buildPartial();
} else {
bytes_ = value;
}
onChanged();
} else {
bytesBuilder_.mergeFrom(value);
}
bitField0_ |= 0x00000008;
return this;
}
/**
* optional .aialgorithms.proto2.Bytes bytes = 9;
*/
public Builder clearBytes() {
if (bytesBuilder_ == null) {
bytes_ = aialgorithms.proto2.RecordProto2.Bytes.getDefaultInstance();
onChanged();
} else {
bytesBuilder_.clear();
}
bitField0_ = (bitField0_ & ~0x00000008);
return this;
}
/**
* optional .aialgorithms.proto2.Bytes bytes = 9;
*/
public aialgorithms.proto2.RecordProto2.Bytes.Builder getBytesBuilder() {
bitField0_ |= 0x00000008;
onChanged();
return getBytesFieldBuilder().getBuilder();
}
/**
* optional .aialgorithms.proto2.Bytes bytes = 9;
*/
public aialgorithms.proto2.RecordProto2.BytesOrBuilder getBytesOrBuilder() {
if (bytesBuilder_ != null) {
return bytesBuilder_.getMessageOrBuilder();
} else {
return bytes_;
}
}
/**
* optional .aialgorithms.proto2.Bytes bytes = 9;
*/
private com.google.protobuf.SingleFieldBuilder<
aialgorithms.proto2.RecordProto2.Bytes, aialgorithms.proto2.RecordProto2.Bytes.Builder, aialgorithms.proto2.RecordProto2.BytesOrBuilder>
getBytesFieldBuilder() {
if (bytesBuilder_ == null) {
bytesBuilder_ = new com.google.protobuf.SingleFieldBuilder<
aialgorithms.proto2.RecordProto2.Bytes, aialgorithms.proto2.RecordProto2.Bytes.Builder, aialgorithms.proto2.RecordProto2.BytesOrBuilder>(
bytes_,
getParentForChildren(),
isClean());
bytes_ = null;
}
return bytesBuilder_;
}
// @@protoc_insertion_point(builder_scope:aialgorithms.proto2.Value)
}
static {
defaultInstance = new Value(true);
defaultInstance.initFields();
}
// @@protoc_insertion_point(class_scope:aialgorithms.proto2.Value)
}
public interface MapEntryOrBuilder
extends com.google.protobuf.MessageOrBuilder {
// optional string key = 1;
/**
* optional string key = 1;
*/
boolean hasKey();
/**
* optional string key = 1;
*/
java.lang.String getKey();
/**
* optional string key = 1;
*/
com.google.protobuf.ByteString
getKeyBytes();
// optional .aialgorithms.proto2.Value value = 2;
/**
* optional .aialgorithms.proto2.Value value = 2;
*/
boolean hasValue();
/**
* optional .aialgorithms.proto2.Value value = 2;
*/
aialgorithms.proto2.RecordProto2.Value getValue();
/**
* optional .aialgorithms.proto2.Value value = 2;
*/
aialgorithms.proto2.RecordProto2.ValueOrBuilder getValueOrBuilder();
}
/**
* Protobuf type {@code aialgorithms.proto2.MapEntry}
*/
public static final class MapEntry extends
com.google.protobuf.GeneratedMessage
implements MapEntryOrBuilder {
// Use MapEntry.newBuilder() to construct.
private MapEntry(com.google.protobuf.GeneratedMessage.Builder> builder) {
super(builder);
this.unknownFields = builder.getUnknownFields();
}
private MapEntry(boolean noInit) { this.unknownFields = com.google.protobuf.UnknownFieldSet.getDefaultInstance(); }
private static final MapEntry defaultInstance;
public static MapEntry getDefaultInstance() {
return defaultInstance;
}
public MapEntry getDefaultInstanceForType() {
return defaultInstance;
}
private final com.google.protobuf.UnknownFieldSet unknownFields;
@java.lang.Override
public final com.google.protobuf.UnknownFieldSet
getUnknownFields() {
return this.unknownFields;
}
private MapEntry(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
initFields();
int mutable_bitField0_ = 0;
com.google.protobuf.UnknownFieldSet.Builder unknownFields =
com.google.protobuf.UnknownFieldSet.newBuilder();
try {
boolean done = false;
while (!done) {
int tag = input.readTag();
switch (tag) {
case 0:
done = true;
break;
default: {
if (!parseUnknownField(input, unknownFields,
extensionRegistry, tag)) {
done = true;
}
break;
}
case 10: {
bitField0_ |= 0x00000001;
key_ = input.readBytes();
break;
}
case 18: {
aialgorithms.proto2.RecordProto2.Value.Builder subBuilder = null;
if (((bitField0_ & 0x00000002) == 0x00000002)) {
subBuilder = value_.toBuilder();
}
value_ = input.readMessage(aialgorithms.proto2.RecordProto2.Value.PARSER, extensionRegistry);
if (subBuilder != null) {
subBuilder.mergeFrom(value_);
value_ = subBuilder.buildPartial();
}
bitField0_ |= 0x00000002;
break;
}
}
}
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
throw e.setUnfinishedMessage(this);
} catch (java.io.IOException e) {
throw new com.google.protobuf.InvalidProtocolBufferException(
e.getMessage()).setUnfinishedMessage(this);
} finally {
this.unknownFields = unknownFields.build();
makeExtensionsImmutable();
}
}
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return aialgorithms.proto2.RecordProto2.internal_static_aialgorithms_proto2_MapEntry_descriptor;
}
protected com.google.protobuf.GeneratedMessage.FieldAccessorTable
internalGetFieldAccessorTable() {
return aialgorithms.proto2.RecordProto2.internal_static_aialgorithms_proto2_MapEntry_fieldAccessorTable
.ensureFieldAccessorsInitialized(
aialgorithms.proto2.RecordProto2.MapEntry.class, aialgorithms.proto2.RecordProto2.MapEntry.Builder.class);
}
public static com.google.protobuf.Parseroptional string key = 1;
*/
public boolean hasKey() {
return ((bitField0_ & 0x00000001) == 0x00000001);
}
/**
* optional string key = 1;
*/
public java.lang.String getKey() {
java.lang.Object ref = key_;
if (ref instanceof java.lang.String) {
return (java.lang.String) ref;
} else {
com.google.protobuf.ByteString bs =
(com.google.protobuf.ByteString) ref;
java.lang.String s = bs.toStringUtf8();
if (bs.isValidUtf8()) {
key_ = s;
}
return s;
}
}
/**
* optional string key = 1;
*/
public com.google.protobuf.ByteString
getKeyBytes() {
java.lang.Object ref = key_;
if (ref instanceof java.lang.String) {
com.google.protobuf.ByteString b =
com.google.protobuf.ByteString.copyFromUtf8(
(java.lang.String) ref);
key_ = b;
return b;
} else {
return (com.google.protobuf.ByteString) ref;
}
}
// optional .aialgorithms.proto2.Value value = 2;
public static final int VALUE_FIELD_NUMBER = 2;
private aialgorithms.proto2.RecordProto2.Value value_;
/**
* optional .aialgorithms.proto2.Value value = 2;
*/
public boolean hasValue() {
return ((bitField0_ & 0x00000002) == 0x00000002);
}
/**
* optional .aialgorithms.proto2.Value value = 2;
*/
public aialgorithms.proto2.RecordProto2.Value getValue() {
return value_;
}
/**
* optional .aialgorithms.proto2.Value value = 2;
*/
public aialgorithms.proto2.RecordProto2.ValueOrBuilder getValueOrBuilder() {
return value_;
}
private void initFields() {
key_ = "";
value_ = aialgorithms.proto2.RecordProto2.Value.getDefaultInstance();
}
private byte memoizedIsInitialized = -1;
public final boolean isInitialized() {
byte isInitialized = memoizedIsInitialized;
if (isInitialized != -1) return isInitialized == 1;
memoizedIsInitialized = 1;
return true;
}
public void writeTo(com.google.protobuf.CodedOutputStream output)
throws java.io.IOException {
getSerializedSize();
if (((bitField0_ & 0x00000001) == 0x00000001)) {
output.writeBytes(1, getKeyBytes());
}
if (((bitField0_ & 0x00000002) == 0x00000002)) {
output.writeMessage(2, value_);
}
getUnknownFields().writeTo(output);
}
private int memoizedSerializedSize = -1;
public int getSerializedSize() {
int size = memoizedSerializedSize;
if (size != -1) return size;
size = 0;
if (((bitField0_ & 0x00000001) == 0x00000001)) {
size += com.google.protobuf.CodedOutputStream
.computeBytesSize(1, getKeyBytes());
}
if (((bitField0_ & 0x00000002) == 0x00000002)) {
size += com.google.protobuf.CodedOutputStream
.computeMessageSize(2, value_);
}
size += getUnknownFields().getSerializedSize();
memoizedSerializedSize = size;
return size;
}
private static final long serialVersionUID = 0L;
@java.lang.Override
protected java.lang.Object writeReplace()
throws java.io.ObjectStreamException {
return super.writeReplace();
}
public static aialgorithms.proto2.RecordProto2.MapEntry parseFrom(
com.google.protobuf.ByteString data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static aialgorithms.proto2.RecordProto2.MapEntry parseFrom(
com.google.protobuf.ByteString data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static aialgorithms.proto2.RecordProto2.MapEntry parseFrom(byte[] data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static aialgorithms.proto2.RecordProto2.MapEntry parseFrom(
byte[] data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static aialgorithms.proto2.RecordProto2.MapEntry parseFrom(java.io.InputStream input)
throws java.io.IOException {
return PARSER.parseFrom(input);
}
public static aialgorithms.proto2.RecordProto2.MapEntry parseFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return PARSER.parseFrom(input, extensionRegistry);
}
public static aialgorithms.proto2.RecordProto2.MapEntry parseDelimitedFrom(java.io.InputStream input)
throws java.io.IOException {
return PARSER.parseDelimitedFrom(input);
}
public static aialgorithms.proto2.RecordProto2.MapEntry parseDelimitedFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return PARSER.parseDelimitedFrom(input, extensionRegistry);
}
public static aialgorithms.proto2.RecordProto2.MapEntry parseFrom(
com.google.protobuf.CodedInputStream input)
throws java.io.IOException {
return PARSER.parseFrom(input);
}
public static aialgorithms.proto2.RecordProto2.MapEntry parseFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return PARSER.parseFrom(input, extensionRegistry);
}
public static Builder newBuilder() { return Builder.create(); }
public Builder newBuilderForType() { return newBuilder(); }
public static Builder newBuilder(aialgorithms.proto2.RecordProto2.MapEntry prototype) {
return newBuilder().mergeFrom(prototype);
}
public Builder toBuilder() { return newBuilder(this); }
@java.lang.Override
protected Builder newBuilderForType(
com.google.protobuf.GeneratedMessage.BuilderParent parent) {
Builder builder = new Builder(parent);
return builder;
}
/**
* Protobuf type {@code aialgorithms.proto2.MapEntry}
*/
public static final class Builder extends
com.google.protobuf.GeneratedMessage.Builderoptional string key = 1;
*/
public boolean hasKey() {
return ((bitField0_ & 0x00000001) == 0x00000001);
}
/**
* optional string key = 1;
*/
public java.lang.String getKey() {
java.lang.Object ref = key_;
if (!(ref instanceof java.lang.String)) {
java.lang.String s = ((com.google.protobuf.ByteString) ref)
.toStringUtf8();
key_ = s;
return s;
} else {
return (java.lang.String) ref;
}
}
/**
* optional string key = 1;
*/
public com.google.protobuf.ByteString
getKeyBytes() {
java.lang.Object ref = key_;
if (ref instanceof String) {
com.google.protobuf.ByteString b =
com.google.protobuf.ByteString.copyFromUtf8(
(java.lang.String) ref);
key_ = b;
return b;
} else {
return (com.google.protobuf.ByteString) ref;
}
}
/**
* optional string key = 1;
*/
public Builder setKey(
java.lang.String value) {
if (value == null) {
throw new NullPointerException();
}
bitField0_ |= 0x00000001;
key_ = value;
onChanged();
return this;
}
/**
* optional string key = 1;
*/
public Builder clearKey() {
bitField0_ = (bitField0_ & ~0x00000001);
key_ = getDefaultInstance().getKey();
onChanged();
return this;
}
/**
* optional string key = 1;
*/
public Builder setKeyBytes(
com.google.protobuf.ByteString value) {
if (value == null) {
throw new NullPointerException();
}
bitField0_ |= 0x00000001;
key_ = value;
onChanged();
return this;
}
// optional .aialgorithms.proto2.Value value = 2;
private aialgorithms.proto2.RecordProto2.Value value_ = aialgorithms.proto2.RecordProto2.Value.getDefaultInstance();
private com.google.protobuf.SingleFieldBuilder<
aialgorithms.proto2.RecordProto2.Value, aialgorithms.proto2.RecordProto2.Value.Builder, aialgorithms.proto2.RecordProto2.ValueOrBuilder> valueBuilder_;
/**
* optional .aialgorithms.proto2.Value value = 2;
*/
public boolean hasValue() {
return ((bitField0_ & 0x00000002) == 0x00000002);
}
/**
* optional .aialgorithms.proto2.Value value = 2;
*/
public aialgorithms.proto2.RecordProto2.Value getValue() {
if (valueBuilder_ == null) {
return value_;
} else {
return valueBuilder_.getMessage();
}
}
/**
* optional .aialgorithms.proto2.Value value = 2;
*/
public Builder setValue(aialgorithms.proto2.RecordProto2.Value value) {
if (valueBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
value_ = value;
onChanged();
} else {
valueBuilder_.setMessage(value);
}
bitField0_ |= 0x00000002;
return this;
}
/**
* optional .aialgorithms.proto2.Value value = 2;
*/
public Builder setValue(
aialgorithms.proto2.RecordProto2.Value.Builder builderForValue) {
if (valueBuilder_ == null) {
value_ = builderForValue.build();
onChanged();
} else {
valueBuilder_.setMessage(builderForValue.build());
}
bitField0_ |= 0x00000002;
return this;
}
/**
* optional .aialgorithms.proto2.Value value = 2;
*/
public Builder mergeValue(aialgorithms.proto2.RecordProto2.Value value) {
if (valueBuilder_ == null) {
if (((bitField0_ & 0x00000002) == 0x00000002) &&
value_ != aialgorithms.proto2.RecordProto2.Value.getDefaultInstance()) {
value_ =
aialgorithms.proto2.RecordProto2.Value.newBuilder(value_).mergeFrom(value).buildPartial();
} else {
value_ = value;
}
onChanged();
} else {
valueBuilder_.mergeFrom(value);
}
bitField0_ |= 0x00000002;
return this;
}
/**
* optional .aialgorithms.proto2.Value value = 2;
*/
public Builder clearValue() {
if (valueBuilder_ == null) {
value_ = aialgorithms.proto2.RecordProto2.Value.getDefaultInstance();
onChanged();
} else {
valueBuilder_.clear();
}
bitField0_ = (bitField0_ & ~0x00000002);
return this;
}
/**
* optional .aialgorithms.proto2.Value value = 2;
*/
public aialgorithms.proto2.RecordProto2.Value.Builder getValueBuilder() {
bitField0_ |= 0x00000002;
onChanged();
return getValueFieldBuilder().getBuilder();
}
/**
* optional .aialgorithms.proto2.Value value = 2;
*/
public aialgorithms.proto2.RecordProto2.ValueOrBuilder getValueOrBuilder() {
if (valueBuilder_ != null) {
return valueBuilder_.getMessageOrBuilder();
} else {
return value_;
}
}
/**
* optional .aialgorithms.proto2.Value value = 2;
*/
private com.google.protobuf.SingleFieldBuilder<
aialgorithms.proto2.RecordProto2.Value, aialgorithms.proto2.RecordProto2.Value.Builder, aialgorithms.proto2.RecordProto2.ValueOrBuilder>
getValueFieldBuilder() {
if (valueBuilder_ == null) {
valueBuilder_ = new com.google.protobuf.SingleFieldBuilder<
aialgorithms.proto2.RecordProto2.Value, aialgorithms.proto2.RecordProto2.Value.Builder, aialgorithms.proto2.RecordProto2.ValueOrBuilder>(
value_,
getParentForChildren(),
isClean());
value_ = null;
}
return valueBuilder_;
}
// @@protoc_insertion_point(builder_scope:aialgorithms.proto2.MapEntry)
}
static {
defaultInstance = new MapEntry(true);
defaultInstance.initFields();
}
// @@protoc_insertion_point(class_scope:aialgorithms.proto2.MapEntry)
}
public interface RecordOrBuilder
extends com.google.protobuf.MessageOrBuilder {
// repeated .aialgorithms.proto2.MapEntry features = 1;
/**
* repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ java.util.List
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ aialgorithms.proto2.RecordProto2.MapEntry getFeatures(int index); /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ int getFeaturesCount(); /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ java.util.List extends aialgorithms.proto2.RecordProto2.MapEntryOrBuilder> getFeaturesOrBuilderList(); /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ aialgorithms.proto2.RecordProto2.MapEntryOrBuilder getFeaturesOrBuilder( int index); // repeated .aialgorithms.proto2.MapEntry label = 2; /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ java.util.List
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ aialgorithms.proto2.RecordProto2.MapEntry getLabel(int index); /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ int getLabelCount(); /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ java.util.List extends aialgorithms.proto2.RecordProto2.MapEntryOrBuilder> getLabelOrBuilderList(); /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ aialgorithms.proto2.RecordProto2.MapEntryOrBuilder getLabelOrBuilder( int index); // optional string uid = 3; /** *
optional string uid = 3;
*
* * Unique identifier for this record in the dataset. * * Whilst not necessary, this allows better * debugging where there are data issues. * * This is not used by the algorithm directly. **/ boolean hasUid(); /** *
optional string uid = 3;
*
* * Unique identifier for this record in the dataset. * * Whilst not necessary, this allows better * debugging where there are data issues. * * This is not used by the algorithm directly. **/ java.lang.String getUid(); /** *
optional string uid = 3;
*
* * Unique identifier for this record in the dataset. * * Whilst not necessary, this allows better * debugging where there are data issues. * * This is not used by the algorithm directly. **/ com.google.protobuf.ByteString getUidBytes(); // optional string metadata = 4; /** *
optional string metadata = 4;
*
* * Textual metadata describing the record. * * This may include JSON-serialized information * about the source of the record. * * This is not used by the algorithm directly. **/ boolean hasMetadata(); /** *
optional string metadata = 4;
*
* * Textual metadata describing the record. * * This may include JSON-serialized information * about the source of the record. * * This is not used by the algorithm directly. **/ java.lang.String getMetadata(); /** *
optional string metadata = 4;
*
* * Textual metadata describing the record. * * This may include JSON-serialized information * about the source of the record. * * This is not used by the algorithm directly. **/ com.google.protobuf.ByteString getMetadataBytes(); // optional string configuration = 5; /** *
optional string configuration = 5;
*
* * Optional serialized JSON object that allows per-record * hyper-parameters/configuration/other information to be set. * * The meaning/interpretation of this field is defined by * the algorithm author and may not be supported. * * This is used to pass additional inference configuration * when batch inference is used (e.g. types of scores to return). **/ boolean hasConfiguration(); /** *
optional string configuration = 5;
*
* * Optional serialized JSON object that allows per-record * hyper-parameters/configuration/other information to be set. * * The meaning/interpretation of this field is defined by * the algorithm author and may not be supported. * * This is used to pass additional inference configuration * when batch inference is used (e.g. types of scores to return). **/ java.lang.String getConfiguration(); /** *
optional string configuration = 5;
*
* * Optional serialized JSON object that allows per-record * hyper-parameters/configuration/other information to be set. * * The meaning/interpretation of this field is defined by * the algorithm author and may not be supported. * * This is used to pass additional inference configuration * when batch inference is used (e.g. types of scores to return). **/ com.google.protobuf.ByteString getConfigurationBytes(); } /** * Protobuf type {@code aialgorithms.proto2.Record} */ public static final class Record extends com.google.protobuf.GeneratedMessage implements RecordOrBuilder { // Use Record.newBuilder() to construct. private Record(com.google.protobuf.GeneratedMessage.Builder> builder) { super(builder); this.unknownFields = builder.getUnknownFields(); } private Record(boolean noInit) { this.unknownFields = com.google.protobuf.UnknownFieldSet.getDefaultInstance(); } private static final Record defaultInstance; public static Record getDefaultInstance() { return defaultInstance; } public Record getDefaultInstanceForType() { return defaultInstance; } private final com.google.protobuf.UnknownFieldSet unknownFields; @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private Record( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { initFields(); int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; default: { if (!parseUnknownField(input, unknownFields, extensionRegistry, tag)) { done = true; } break; } case 10: { if (!((mutable_bitField0_ & 0x00000001) == 0x00000001)) { features_ = new java.util.ArrayList
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public java.util.List
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public java.util.List extends aialgorithms.proto2.RecordProto2.MapEntryOrBuilder> getFeaturesOrBuilderList() { return features_; } /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public int getFeaturesCount() { return features_.size(); } /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public aialgorithms.proto2.RecordProto2.MapEntry getFeatures(int index) { return features_.get(index); } /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public aialgorithms.proto2.RecordProto2.MapEntryOrBuilder getFeaturesOrBuilder( int index) { return features_.get(index); } // repeated .aialgorithms.proto2.MapEntry label = 2; public static final int LABEL_FIELD_NUMBER = 2; private java.util.List
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public java.util.List
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public java.util.List extends aialgorithms.proto2.RecordProto2.MapEntryOrBuilder> getLabelOrBuilderList() { return label_; } /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public int getLabelCount() { return label_.size(); } /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public aialgorithms.proto2.RecordProto2.MapEntry getLabel(int index) { return label_.get(index); } /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public aialgorithms.proto2.RecordProto2.MapEntryOrBuilder getLabelOrBuilder( int index) { return label_.get(index); } // optional string uid = 3; public static final int UID_FIELD_NUMBER = 3; private java.lang.Object uid_; /** *
optional string uid = 3;
*
* * Unique identifier for this record in the dataset. * * Whilst not necessary, this allows better * debugging where there are data issues. * * This is not used by the algorithm directly. **/ public boolean hasUid() { return ((bitField0_ & 0x00000001) == 0x00000001); } /** *
optional string uid = 3;
*
* * Unique identifier for this record in the dataset. * * Whilst not necessary, this allows better * debugging where there are data issues. * * This is not used by the algorithm directly. **/ public java.lang.String getUid() { java.lang.Object ref = uid_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { uid_ = s; } return s; } } /** *
optional string uid = 3;
*
* * Unique identifier for this record in the dataset. * * Whilst not necessary, this allows better * debugging where there are data issues. * * This is not used by the algorithm directly. **/ public com.google.protobuf.ByteString getUidBytes() { java.lang.Object ref = uid_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); uid_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } // optional string metadata = 4; public static final int METADATA_FIELD_NUMBER = 4; private java.lang.Object metadata_; /** *
optional string metadata = 4;
*
* * Textual metadata describing the record. * * This may include JSON-serialized information * about the source of the record. * * This is not used by the algorithm directly. **/ public boolean hasMetadata() { return ((bitField0_ & 0x00000002) == 0x00000002); } /** *
optional string metadata = 4;
*
* * Textual metadata describing the record. * * This may include JSON-serialized information * about the source of the record. * * This is not used by the algorithm directly. **/ public java.lang.String getMetadata() { java.lang.Object ref = metadata_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { metadata_ = s; } return s; } } /** *
optional string metadata = 4;
*
* * Textual metadata describing the record. * * This may include JSON-serialized information * about the source of the record. * * This is not used by the algorithm directly. **/ public com.google.protobuf.ByteString getMetadataBytes() { java.lang.Object ref = metadata_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); metadata_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } // optional string configuration = 5; public static final int CONFIGURATION_FIELD_NUMBER = 5; private java.lang.Object configuration_; /** *
optional string configuration = 5;
*
* * Optional serialized JSON object that allows per-record * hyper-parameters/configuration/other information to be set. * * The meaning/interpretation of this field is defined by * the algorithm author and may not be supported. * * This is used to pass additional inference configuration * when batch inference is used (e.g. types of scores to return). **/ public boolean hasConfiguration() { return ((bitField0_ & 0x00000004) == 0x00000004); } /** *
optional string configuration = 5;
*
* * Optional serialized JSON object that allows per-record * hyper-parameters/configuration/other information to be set. * * The meaning/interpretation of this field is defined by * the algorithm author and may not be supported. * * This is used to pass additional inference configuration * when batch inference is used (e.g. types of scores to return). **/ public java.lang.String getConfiguration() { java.lang.Object ref = configuration_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (bs.isValidUtf8()) { configuration_ = s; } return s; } } /** *
optional string configuration = 5;
*
* * Optional serialized JSON object that allows per-record * hyper-parameters/configuration/other information to be set. * * The meaning/interpretation of this field is defined by * the algorithm author and may not be supported. * * This is used to pass additional inference configuration * when batch inference is used (e.g. types of scores to return). **/ public com.google.protobuf.ByteString getConfigurationBytes() { java.lang.Object ref = configuration_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); configuration_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } private void initFields() { features_ = java.util.Collections.emptyList(); label_ = java.util.Collections.emptyList(); uid_ = ""; metadata_ = ""; configuration_ = ""; } private byte memoizedIsInitialized = -1; public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized != -1) return isInitialized == 1; memoizedIsInitialized = 1; return true; } public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { getSerializedSize(); for (int i = 0; i < features_.size(); i++) { output.writeMessage(1, features_.get(i)); } for (int i = 0; i < label_.size(); i++) { output.writeMessage(2, label_.get(i)); } if (((bitField0_ & 0x00000001) == 0x00000001)) { output.writeBytes(3, getUidBytes()); } if (((bitField0_ & 0x00000002) == 0x00000002)) { output.writeBytes(4, getMetadataBytes()); } if (((bitField0_ & 0x00000004) == 0x00000004)) { output.writeBytes(5, getConfigurationBytes()); } getUnknownFields().writeTo(output); } private int memoizedSerializedSize = -1; public int getSerializedSize() { int size = memoizedSerializedSize; if (size != -1) return size; size = 0; for (int i = 0; i < features_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(1, features_.get(i)); } for (int i = 0; i < label_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(2, label_.get(i)); } if (((bitField0_ & 0x00000001) == 0x00000001)) { size += com.google.protobuf.CodedOutputStream .computeBytesSize(3, getUidBytes()); } if (((bitField0_ & 0x00000002) == 0x00000002)) { size += com.google.protobuf.CodedOutputStream .computeBytesSize(4, getMetadataBytes()); } if (((bitField0_ & 0x00000004) == 0x00000004)) { size += com.google.protobuf.CodedOutputStream .computeBytesSize(5, getConfigurationBytes()); } size += getUnknownFields().getSerializedSize(); memoizedSerializedSize = size; return size; } private static final long serialVersionUID = 0L; @java.lang.Override protected java.lang.Object writeReplace() throws java.io.ObjectStreamException { return super.writeReplace(); } public static aialgorithms.proto2.RecordProto2.Record parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static aialgorithms.proto2.RecordProto2.Record parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static aialgorithms.proto2.RecordProto2.Record parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static aialgorithms.proto2.RecordProto2.Record parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static aialgorithms.proto2.RecordProto2.Record parseFrom(java.io.InputStream input) throws java.io.IOException { return PARSER.parseFrom(input); } public static aialgorithms.proto2.RecordProto2.Record parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return PARSER.parseFrom(input, extensionRegistry); } public static aialgorithms.proto2.RecordProto2.Record parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return PARSER.parseDelimitedFrom(input); } public static aialgorithms.proto2.RecordProto2.Record parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return PARSER.parseDelimitedFrom(input, extensionRegistry); } public static aialgorithms.proto2.RecordProto2.Record parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return PARSER.parseFrom(input); } public static aialgorithms.proto2.RecordProto2.Record parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return PARSER.parseFrom(input, extensionRegistry); } public static Builder newBuilder() { return Builder.create(); } public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder(aialgorithms.proto2.RecordProto2.Record prototype) { return newBuilder().mergeFrom(prototype); } public Builder toBuilder() { return newBuilder(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessage.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * Protobuf type {@code aialgorithms.proto2.Record} */ public static final class Builder extends com.google.protobuf.GeneratedMessage.Builder
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public java.util.List
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public int getFeaturesCount() { if (featuresBuilder_ == null) { return features_.size(); } else { return featuresBuilder_.getCount(); } } /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public aialgorithms.proto2.RecordProto2.MapEntry getFeatures(int index) { if (featuresBuilder_ == null) { return features_.get(index); } else { return featuresBuilder_.getMessage(index); } } /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public Builder setFeatures( int index, aialgorithms.proto2.RecordProto2.MapEntry value) { if (featuresBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureFeaturesIsMutable(); features_.set(index, value); onChanged(); } else { featuresBuilder_.setMessage(index, value); } return this; } /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public Builder setFeatures( int index, aialgorithms.proto2.RecordProto2.MapEntry.Builder builderForValue) { if (featuresBuilder_ == null) { ensureFeaturesIsMutable(); features_.set(index, builderForValue.build()); onChanged(); } else { featuresBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public Builder addFeatures(aialgorithms.proto2.RecordProto2.MapEntry value) { if (featuresBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureFeaturesIsMutable(); features_.add(value); onChanged(); } else { featuresBuilder_.addMessage(value); } return this; } /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public Builder addFeatures( int index, aialgorithms.proto2.RecordProto2.MapEntry value) { if (featuresBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureFeaturesIsMutable(); features_.add(index, value); onChanged(); } else { featuresBuilder_.addMessage(index, value); } return this; } /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public Builder addFeatures( aialgorithms.proto2.RecordProto2.MapEntry.Builder builderForValue) { if (featuresBuilder_ == null) { ensureFeaturesIsMutable(); features_.add(builderForValue.build()); onChanged(); } else { featuresBuilder_.addMessage(builderForValue.build()); } return this; } /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public Builder addFeatures( int index, aialgorithms.proto2.RecordProto2.MapEntry.Builder builderForValue) { if (featuresBuilder_ == null) { ensureFeaturesIsMutable(); features_.add(index, builderForValue.build()); onChanged(); } else { featuresBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public Builder addAllFeatures( java.lang.Iterable extends aialgorithms.proto2.RecordProto2.MapEntry> values) { if (featuresBuilder_ == null) { ensureFeaturesIsMutable(); super.addAll(values, features_); onChanged(); } else { featuresBuilder_.addAllMessages(values); } return this; } /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public Builder clearFeatures() { if (featuresBuilder_ == null) { features_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); } else { featuresBuilder_.clear(); } return this; } /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public Builder removeFeatures(int index) { if (featuresBuilder_ == null) { ensureFeaturesIsMutable(); features_.remove(index); onChanged(); } else { featuresBuilder_.remove(index); } return this; } /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public aialgorithms.proto2.RecordProto2.MapEntry.Builder getFeaturesBuilder( int index) { return getFeaturesFieldBuilder().getBuilder(index); } /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public aialgorithms.proto2.RecordProto2.MapEntryOrBuilder getFeaturesOrBuilder( int index) { if (featuresBuilder_ == null) { return features_.get(index); } else { return featuresBuilder_.getMessageOrBuilder(index); } } /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public java.util.List extends aialgorithms.proto2.RecordProto2.MapEntryOrBuilder> getFeaturesOrBuilderList() { if (featuresBuilder_ != null) { return featuresBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(features_); } } /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public aialgorithms.proto2.RecordProto2.MapEntry.Builder addFeaturesBuilder() { return getFeaturesFieldBuilder().addBuilder( aialgorithms.proto2.RecordProto2.MapEntry.getDefaultInstance()); } /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public aialgorithms.proto2.RecordProto2.MapEntry.Builder addFeaturesBuilder( int index) { return getFeaturesFieldBuilder().addBuilder( index, aialgorithms.proto2.RecordProto2.MapEntry.getDefaultInstance()); } /** *
repeated .aialgorithms.proto2.MapEntry features = 1;
*
* * Map from the name of the feature to the value. * * For vectors and libsvm-like datasets, * a single feature with the name `values` * should be specified. **/ public java.util.List
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public java.util.List
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public int getLabelCount() { if (labelBuilder_ == null) { return label_.size(); } else { return labelBuilder_.getCount(); } } /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public aialgorithms.proto2.RecordProto2.MapEntry getLabel(int index) { if (labelBuilder_ == null) { return label_.get(index); } else { return labelBuilder_.getMessage(index); } } /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public Builder setLabel( int index, aialgorithms.proto2.RecordProto2.MapEntry value) { if (labelBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureLabelIsMutable(); label_.set(index, value); onChanged(); } else { labelBuilder_.setMessage(index, value); } return this; } /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public Builder setLabel( int index, aialgorithms.proto2.RecordProto2.MapEntry.Builder builderForValue) { if (labelBuilder_ == null) { ensureLabelIsMutable(); label_.set(index, builderForValue.build()); onChanged(); } else { labelBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public Builder addLabel(aialgorithms.proto2.RecordProto2.MapEntry value) { if (labelBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureLabelIsMutable(); label_.add(value); onChanged(); } else { labelBuilder_.addMessage(value); } return this; } /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public Builder addLabel( int index, aialgorithms.proto2.RecordProto2.MapEntry value) { if (labelBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureLabelIsMutable(); label_.add(index, value); onChanged(); } else { labelBuilder_.addMessage(index, value); } return this; } /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public Builder addLabel( aialgorithms.proto2.RecordProto2.MapEntry.Builder builderForValue) { if (labelBuilder_ == null) { ensureLabelIsMutable(); label_.add(builderForValue.build()); onChanged(); } else { labelBuilder_.addMessage(builderForValue.build()); } return this; } /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public Builder addLabel( int index, aialgorithms.proto2.RecordProto2.MapEntry.Builder builderForValue) { if (labelBuilder_ == null) { ensureLabelIsMutable(); label_.add(index, builderForValue.build()); onChanged(); } else { labelBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public Builder addAllLabel( java.lang.Iterable extends aialgorithms.proto2.RecordProto2.MapEntry> values) { if (labelBuilder_ == null) { ensureLabelIsMutable(); super.addAll(values, label_); onChanged(); } else { labelBuilder_.addAllMessages(values); } return this; } /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public Builder clearLabel() { if (labelBuilder_ == null) { label_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000002); onChanged(); } else { labelBuilder_.clear(); } return this; } /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public Builder removeLabel(int index) { if (labelBuilder_ == null) { ensureLabelIsMutable(); label_.remove(index); onChanged(); } else { labelBuilder_.remove(index); } return this; } /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public aialgorithms.proto2.RecordProto2.MapEntry.Builder getLabelBuilder( int index) { return getLabelFieldBuilder().getBuilder(index); } /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public aialgorithms.proto2.RecordProto2.MapEntryOrBuilder getLabelOrBuilder( int index) { if (labelBuilder_ == null) { return label_.get(index); } else { return labelBuilder_.getMessageOrBuilder(index); } } /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public java.util.List extends aialgorithms.proto2.RecordProto2.MapEntryOrBuilder> getLabelOrBuilderList() { if (labelBuilder_ != null) { return labelBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(label_); } } /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public aialgorithms.proto2.RecordProto2.MapEntry.Builder addLabelBuilder() { return getLabelFieldBuilder().addBuilder( aialgorithms.proto2.RecordProto2.MapEntry.getDefaultInstance()); } /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public aialgorithms.proto2.RecordProto2.MapEntry.Builder addLabelBuilder( int index) { return getLabelFieldBuilder().addBuilder( index, aialgorithms.proto2.RecordProto2.MapEntry.getDefaultInstance()); } /** *
repeated .aialgorithms.proto2.MapEntry label = 2;
*
* * Optional set of labels for this record. * Similar to features field above, the key used for * generic scalar / vector labels should ve 'values' **/ public java.util.List
optional string uid = 3;
*
* * Unique identifier for this record in the dataset. * * Whilst not necessary, this allows better * debugging where there are data issues. * * This is not used by the algorithm directly. **/ public boolean hasUid() { return ((bitField0_ & 0x00000004) == 0x00000004); } /** *
optional string uid = 3;
*
* * Unique identifier for this record in the dataset. * * Whilst not necessary, this allows better * debugging where there are data issues. * * This is not used by the algorithm directly. **/ public java.lang.String getUid() { java.lang.Object ref = uid_; if (!(ref instanceof java.lang.String)) { java.lang.String s = ((com.google.protobuf.ByteString) ref) .toStringUtf8(); uid_ = s; return s; } else { return (java.lang.String) ref; } } /** *
optional string uid = 3;
*
* * Unique identifier for this record in the dataset. * * Whilst not necessary, this allows better * debugging where there are data issues. * * This is not used by the algorithm directly. **/ public com.google.protobuf.ByteString getUidBytes() { java.lang.Object ref = uid_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); uid_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
optional string uid = 3;
*
* * Unique identifier for this record in the dataset. * * Whilst not necessary, this allows better * debugging where there are data issues. * * This is not used by the algorithm directly. **/ public Builder setUid( java.lang.String value) { if (value == null) { throw new NullPointerException(); } bitField0_ |= 0x00000004; uid_ = value; onChanged(); return this; } /** *
optional string uid = 3;
*
* * Unique identifier for this record in the dataset. * * Whilst not necessary, this allows better * debugging where there are data issues. * * This is not used by the algorithm directly. **/ public Builder clearUid() { bitField0_ = (bitField0_ & ~0x00000004); uid_ = getDefaultInstance().getUid(); onChanged(); return this; } /** *
optional string uid = 3;
*
* * Unique identifier for this record in the dataset. * * Whilst not necessary, this allows better * debugging where there are data issues. * * This is not used by the algorithm directly. **/ public Builder setUidBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } bitField0_ |= 0x00000004; uid_ = value; onChanged(); return this; } // optional string metadata = 4; private java.lang.Object metadata_ = ""; /** *
optional string metadata = 4;
*
* * Textual metadata describing the record. * * This may include JSON-serialized information * about the source of the record. * * This is not used by the algorithm directly. **/ public boolean hasMetadata() { return ((bitField0_ & 0x00000008) == 0x00000008); } /** *
optional string metadata = 4;
*
* * Textual metadata describing the record. * * This may include JSON-serialized information * about the source of the record. * * This is not used by the algorithm directly. **/ public java.lang.String getMetadata() { java.lang.Object ref = metadata_; if (!(ref instanceof java.lang.String)) { java.lang.String s = ((com.google.protobuf.ByteString) ref) .toStringUtf8(); metadata_ = s; return s; } else { return (java.lang.String) ref; } } /** *
optional string metadata = 4;
*
* * Textual metadata describing the record. * * This may include JSON-serialized information * about the source of the record. * * This is not used by the algorithm directly. **/ public com.google.protobuf.ByteString getMetadataBytes() { java.lang.Object ref = metadata_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); metadata_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
optional string metadata = 4;
*
* * Textual metadata describing the record. * * This may include JSON-serialized information * about the source of the record. * * This is not used by the algorithm directly. **/ public Builder setMetadata( java.lang.String value) { if (value == null) { throw new NullPointerException(); } bitField0_ |= 0x00000008; metadata_ = value; onChanged(); return this; } /** *
optional string metadata = 4;
*
* * Textual metadata describing the record. * * This may include JSON-serialized information * about the source of the record. * * This is not used by the algorithm directly. **/ public Builder clearMetadata() { bitField0_ = (bitField0_ & ~0x00000008); metadata_ = getDefaultInstance().getMetadata(); onChanged(); return this; } /** *
optional string metadata = 4;
*
* * Textual metadata describing the record. * * This may include JSON-serialized information * about the source of the record. * * This is not used by the algorithm directly. **/ public Builder setMetadataBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } bitField0_ |= 0x00000008; metadata_ = value; onChanged(); return this; } // optional string configuration = 5; private java.lang.Object configuration_ = ""; /** *
optional string configuration = 5;
*
* * Optional serialized JSON object that allows per-record * hyper-parameters/configuration/other information to be set. * * The meaning/interpretation of this field is defined by * the algorithm author and may not be supported. * * This is used to pass additional inference configuration * when batch inference is used (e.g. types of scores to return). **/ public boolean hasConfiguration() { return ((bitField0_ & 0x00000010) == 0x00000010); } /** *
optional string configuration = 5;
*
* * Optional serialized JSON object that allows per-record * hyper-parameters/configuration/other information to be set. * * The meaning/interpretation of this field is defined by * the algorithm author and may not be supported. * * This is used to pass additional inference configuration * when batch inference is used (e.g. types of scores to return). **/ public java.lang.String getConfiguration() { java.lang.Object ref = configuration_; if (!(ref instanceof java.lang.String)) { java.lang.String s = ((com.google.protobuf.ByteString) ref) .toStringUtf8(); configuration_ = s; return s; } else { return (java.lang.String) ref; } } /** *
optional string configuration = 5;
*
* * Optional serialized JSON object that allows per-record * hyper-parameters/configuration/other information to be set. * * The meaning/interpretation of this field is defined by * the algorithm author and may not be supported. * * This is used to pass additional inference configuration * when batch inference is used (e.g. types of scores to return). **/ public com.google.protobuf.ByteString getConfigurationBytes() { java.lang.Object ref = configuration_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); configuration_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
optional string configuration = 5;
*
* * Optional serialized JSON object that allows per-record * hyper-parameters/configuration/other information to be set. * * The meaning/interpretation of this field is defined by * the algorithm author and may not be supported. * * This is used to pass additional inference configuration * when batch inference is used (e.g. types of scores to return). **/ public Builder setConfiguration( java.lang.String value) { if (value == null) { throw new NullPointerException(); } bitField0_ |= 0x00000010; configuration_ = value; onChanged(); return this; } /** *
optional string configuration = 5;
*
* * Optional serialized JSON object that allows per-record * hyper-parameters/configuration/other information to be set. * * The meaning/interpretation of this field is defined by * the algorithm author and may not be supported. * * This is used to pass additional inference configuration * when batch inference is used (e.g. types of scores to return). **/ public Builder clearConfiguration() { bitField0_ = (bitField0_ & ~0x00000010); configuration_ = getDefaultInstance().getConfiguration(); onChanged(); return this; } /** *
optional string configuration = 5;
*
* * Optional serialized JSON object that allows per-record * hyper-parameters/configuration/other information to be set. * * The meaning/interpretation of this field is defined by * the algorithm author and may not be supported. * * This is used to pass additional inference configuration * when batch inference is used (e.g. types of scores to return). **/ public Builder setConfigurationBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } bitField0_ |= 0x00000010; configuration_ = value; onChanged(); return this; } // @@protoc_insertion_point(builder_scope:aialgorithms.proto2.Record) } static { defaultInstance = new Record(true); defaultInstance.initFields(); } // @@protoc_insertion_point(class_scope:aialgorithms.proto2.Record) } private static com.google.protobuf.Descriptors.Descriptor internal_static_aialgorithms_proto2_Float32Tensor_descriptor; private static com.google.protobuf.GeneratedMessage.FieldAccessorTable internal_static_aialgorithms_proto2_Float32Tensor_fieldAccessorTable; private static com.google.protobuf.Descriptors.Descriptor internal_static_aialgorithms_proto2_Float64Tensor_descriptor; private static com.google.protobuf.GeneratedMessage.FieldAccessorTable internal_static_aialgorithms_proto2_Float64Tensor_fieldAccessorTable; private static com.google.protobuf.Descriptors.Descriptor internal_static_aialgorithms_proto2_Int32Tensor_descriptor; private static com.google.protobuf.GeneratedMessage.FieldAccessorTable internal_static_aialgorithms_proto2_Int32Tensor_fieldAccessorTable; private static com.google.protobuf.Descriptors.Descriptor internal_static_aialgorithms_proto2_Bytes_descriptor; private static com.google.protobuf.GeneratedMessage.FieldAccessorTable internal_static_aialgorithms_proto2_Bytes_fieldAccessorTable; private static com.google.protobuf.Descriptors.Descriptor internal_static_aialgorithms_proto2_Value_descriptor; private static com.google.protobuf.GeneratedMessage.FieldAccessorTable internal_static_aialgorithms_proto2_Value_fieldAccessorTable; private static com.google.protobuf.Descriptors.Descriptor internal_static_aialgorithms_proto2_MapEntry_descriptor; private static com.google.protobuf.GeneratedMessage.FieldAccessorTable internal_static_aialgorithms_proto2_MapEntry_fieldAccessorTable; private static com.google.protobuf.Descriptors.Descriptor internal_static_aialgorithms_proto2_Record_descriptor; private static com.google.protobuf.GeneratedMessage.FieldAccessorTable internal_static_aialgorithms_proto2_Record_fieldAccessorTable; public static com.google.protobuf.Descriptors.FileDescriptor getDescriptor() { return descriptor; } private static com.google.protobuf.Descriptors.FileDescriptor descriptor; static { java.lang.String[] descriptorData = { "\n\"AIAlgorithmsProtobufSchema/p.proto\022\023ai" + "algorithms.proto2\"H\n\rFloat32Tensor\022\022\n\006va" + "lues\030\001 \003(\002B\002\020\001\022\020\n\004keys\030\002 \003(\004B\002\020\001\022\021\n\005shap" + "e\030\003 \003(\004B\002\020\001\"H\n\rFloat64Tensor\022\022\n\006values\030\001" + " \003(\001B\002\020\001\022\020\n\004keys\030\002 \003(\004B\002\020\001\022\021\n\005shape\030\003 \003(" + "\004B\002\020\001\"F\n\013Int32Tensor\022\022\n\006values\030\001 \003(\005B\002\020\001" + "\022\020\n\004keys\030\002 \003(\004B\002\020\001\022\021\n\005shape\030\003 \003(\004B\002\020\001\",\n" + "\005Bytes\022\r\n\005value\030\001 \003(\014\022\024\n\014content_type\030\002 " + "\001(\t\"\342\001\n\005Value\022:\n\016float32_tensor\030\002 \001(\0132\"." + "aialgorithms.proto2.Float32Tensor\022:\n\016flo", "at64_tensor\030\003 \001(\0132\".aialgorithms.proto2." + "Float64Tensor\0226\n\014int32_tensor\030\007 \001(\0132 .ai" + "algorithms.proto2.Int32Tensor\022)\n\005bytes\030\t" + " \001(\0132\032.aialgorithms.proto2.Bytes\"B\n\010MapE" + "ntry\022\013\n\003key\030\001 \001(\t\022)\n\005value\030\002 \001(\0132\032.aialg" + "orithms.proto2.Value\"\235\001\n\006Record\022/\n\010featu" + "res\030\001 \003(\0132\035.aialgorithms.proto2.MapEntry" + "\022,\n\005label\030\002 \003(\0132\035.aialgorithms.proto2.Ma" + "pEntry\022\013\n\003uid\030\003 \001(\t\022\020\n\010metadata\030\004 \001(\t\022\025\n" + "\rconfiguration\030\005 \001(\tB\016B\014RecordProto2" }; com.google.protobuf.Descriptors.FileDescriptor.InternalDescriptorAssigner assigner = new com.google.protobuf.Descriptors.FileDescriptor.InternalDescriptorAssigner() { public com.google.protobuf.ExtensionRegistry assignDescriptors( com.google.protobuf.Descriptors.FileDescriptor root) { descriptor = root; internal_static_aialgorithms_proto2_Float32Tensor_descriptor = getDescriptor().getMessageTypes().get(0); internal_static_aialgorithms_proto2_Float32Tensor_fieldAccessorTable = new com.google.protobuf.GeneratedMessage.FieldAccessorTable( internal_static_aialgorithms_proto2_Float32Tensor_descriptor, new java.lang.String[] { "Values", "Keys", "Shape", }); internal_static_aialgorithms_proto2_Float64Tensor_descriptor = getDescriptor().getMessageTypes().get(1); internal_static_aialgorithms_proto2_Float64Tensor_fieldAccessorTable = new com.google.protobuf.GeneratedMessage.FieldAccessorTable( internal_static_aialgorithms_proto2_Float64Tensor_descriptor, new java.lang.String[] { "Values", "Keys", "Shape", }); internal_static_aialgorithms_proto2_Int32Tensor_descriptor = getDescriptor().getMessageTypes().get(2); internal_static_aialgorithms_proto2_Int32Tensor_fieldAccessorTable = new com.google.protobuf.GeneratedMessage.FieldAccessorTable( internal_static_aialgorithms_proto2_Int32Tensor_descriptor, new java.lang.String[] { "Values", "Keys", "Shape", }); internal_static_aialgorithms_proto2_Bytes_descriptor = getDescriptor().getMessageTypes().get(3); internal_static_aialgorithms_proto2_Bytes_fieldAccessorTable = new com.google.protobuf.GeneratedMessage.FieldAccessorTable( internal_static_aialgorithms_proto2_Bytes_descriptor, new java.lang.String[] { "Value", "ContentType", }); internal_static_aialgorithms_proto2_Value_descriptor = getDescriptor().getMessageTypes().get(4); internal_static_aialgorithms_proto2_Value_fieldAccessorTable = new com.google.protobuf.GeneratedMessage.FieldAccessorTable( internal_static_aialgorithms_proto2_Value_descriptor, new java.lang.String[] { "Float32Tensor", "Float64Tensor", "Int32Tensor", "Bytes", }); internal_static_aialgorithms_proto2_MapEntry_descriptor = getDescriptor().getMessageTypes().get(5); internal_static_aialgorithms_proto2_MapEntry_fieldAccessorTable = new com.google.protobuf.GeneratedMessage.FieldAccessorTable( internal_static_aialgorithms_proto2_MapEntry_descriptor, new java.lang.String[] { "Key", "Value", }); internal_static_aialgorithms_proto2_Record_descriptor = getDescriptor().getMessageTypes().get(6); internal_static_aialgorithms_proto2_Record_fieldAccessorTable = new com.google.protobuf.GeneratedMessage.FieldAccessorTable( internal_static_aialgorithms_proto2_Record_descriptor, new java.lang.String[] { "Features", "Label", "Uid", "Metadata", "Configuration", }); return null; } }; com.google.protobuf.Descriptors.FileDescriptor .internalBuildGeneratedFileFrom(descriptorData, new com.google.protobuf.Descriptors.FileDescriptor[] { }, assigner); } // @@protoc_insertion_point(outer_class_scope) }