version: 0.2 env: variables: IS_GENERIC_IMAGE: "True" CODEBUILD_RESOLVED_SOURCE_VERSION: "sparkml-v33" TGT_IMAGE: "515193369038.dkr.ecr.us-west-2.amazonaws.com/sagemaker-sparkml-serving:3.3" DLC_IMAGES: "515193369038.dkr.ecr.us-west-2.amazonaws.com/sagemaker-sparkml-serving:3.3-pre-scan" phases: install: runtime-versions: python: latest commands: - pip3 install pytest - pip3 install -r $CODEBUILD_SRC_DIR_Source2/src/requirements.txt - pip3 install -r $CODEBUILD_SRC_DIR_Source2/test/requirements.txt pre_build: commands: - echo Logging in to Amazon ECR... - aws ecr get-login-password --region $AWS_DEFAULT_REGION | docker login --username AWS --password-stdin 515193369038.dkr.ecr.$AWS_DEFAULT_REGION.amazonaws.com build: commands: - echo Build started on `date` - echo Building the Docker image... - docker build -t sagemaker-sparkml-serving:3.3 . - echo Build completed on `date` post_build: on-failure: ABORT commands: - echo Tagging pre-scan image... - docker tag sagemaker-sparkml-serving:3.3 $DLC_IMAGES - docker push $DLC_IMAGES - cd $CODEBUILD_SRC_DIR_Source2 - export PYTHONPATH=$(pwd)/src - cd test/dlc_tests - echo Running enhanced ecr image scan - pytest -s sanity/test_ecr_scan.py::test_ecr_enhanced_scan - echo Tagging image for final push - docker tag sagemaker-sparkml-serving:3.3 $TGT_IMAGE - docker push $TGT_IMAGE - echo $TGT_IMAGE pushed to ECR - echo Push completed successfully on `date`