# Copyright 2019-2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import os import subprocess import pytest @pytest.fixture(scope="session", autouse=True) def volume(): try: model_dir = os.path.abspath("test/resources/models") subprocess.check_call( "docker volume create --name batching_model_volume --opt type=none " "--opt device={} --opt o=bind".format(model_dir).split()) yield model_dir finally: subprocess.check_call("docker volume rm batching_model_volume".split()) def test_run_tfs_with_batching_parameters(docker_base_name, tag, runtime_config): try: command = ( "docker run {}--name sagemaker-tensorflow-serving-test -p 8080:8080" " --mount type=volume,source=batching_model_volume,target=/opt/ml/model,readonly" " -e SAGEMAKER_TFS_ENABLE_BATCHING=true" " -e SAGEMAKER_TFS_MAX_BATCH_SIZE=16" " -e SAGEMAKER_TFS_BATCH_TIMEOUT_MICROS=500" " -e SAGEMAKER_TFS_NUM_BATCH_THREADS=100" " -e SAGEMAKER_TFS_MAX_ENQUEUED_BATCHES=1" " -e SAGEMAKER_TFS_NGINX_LOGLEVEL=info" " -e SAGEMAKER_BIND_TO_PORT=8080" " -e SAGEMAKER_SAFE_PORT_RANGE=9000-9999" " {}:{} serve" ).format(runtime_config, docker_base_name, tag) proc = subprocess.Popen(command.split(), stdout=subprocess.PIPE, stderr=subprocess.STDOUT) lines_seen = { "max_batch_size { value: 16 }": 0, "batch_timeout_micros { value: 500 }": 0, "num_batch_threads { value: 100 }": 0, "max_enqueued_batches { value: 1 }": 0 } for stdout_line in iter(proc.stdout.readline, ""): stdout_line = str(stdout_line) for line in lines_seen.keys(): if line in stdout_line: lines_seen[line] += 1 if "Entering the event loop" in stdout_line: for value in lines_seen.values(): assert value == 1 break finally: subprocess.check_call("docker rm -f sagemaker-tensorflow-serving-test".split())