# Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import absolute_import import subprocess import sys import pytest from sagemaker.estimator import Estimator @pytest.fixture(scope="module", autouse=True) def container(): try: command = ( "docker run --name sagemaker-training-toolkit-test " "sagemaker-training-toolkit-test:tensorflow train" ) proc = subprocess.Popen(command.split(), stdout=sys.stdout, stderr=subprocess.STDOUT) yield proc.pid finally: subprocess.check_call("docker rm -f sagemaker-training-toolkit-test".split()) def test_tensorflow_exceptions(capsys): with pytest.raises(Exception): estimator = Estimator( image_uri="sagemaker-training-toolkit-test:tensorflow", role="SageMakerRole", instance_count=1, instance_type="local", ) estimator.fit() stdout = capsys.readouterr().out assert "XlaRuntimeError" in stdout