#!/bin/bash dataset_name=example train_folder_path=../data/${dataset_name}_train_csv/ test_folder_path=../data/${dataset_name}_test_csv/ batch_size=64 batch_size_test=512 selected_layer_idx=-1 pooling_strategy=CLS_TOKEN max_length=64 lr=2e-4 lr_bert=5e-6 entropy_weight=5 num_warmup_steps=1000 seed=1 model_path=../results/${dataset_name}_pair_BERT-finetune_layer${selected_layer_idx}\ _${pooling_strategy}\ _maxlen${max_length}\ _bs${batch_size}\ _lr-bert${lr_bert}\ _lr${lr}\ _warmup${num_warmup_steps}\ _entropy${entropy_weight}\ _seed${seed}/ python -u ../../main.py \ --model_path=${model_path} \ --train_folder_path=${train_folder_path} \ --test_folder_path=${test_folder_path} \ --is_csv_header \ --dim_input=768 \ --number_clusters=64 \ --dim_hidden=8 \ --num_layers_posterior=0 \ --batch_size=${batch_size} \ --batch_size_test=${batch_size_test} \ --lr=${lr} \ --num_warmup_steps=${num_warmup_steps} \ --lr_prior=0.1 \ --num_steps_prior=1 \ --init=0.0 \ --clip=1.0 \ --epochs=1 \ --log_interval=10 \ --check_val_test_interval=10000 \ --save_per_num_epoch=100 \ --num_bad_epochs=10 \ --seed=${seed} \ --entropy_weight=${entropy_weight} \ --num_workers=0 \ --cuda \ --lr_bert=${lr_bert} \ --max_length=${max_length} \ --pooling_strategy=${pooling_strategy} \ --selected_layer_idx=${selected_layer_idx}