// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. // SPDX-License-Identifier: Apache-2.0 /* Krakatoa SR API example file. EXAMPLE 8 -Generates fractals -Uses an animated mesh .obj file (loaded using the function that takes two obj files) -Uses moving_sphere_1.obj and moving_sphere_2.obj as an occlusion -Set the motion blur shutter -exr output */ #include #include int main( void ) { try { // In this example we take a crate a mesh with a velocity channel use it to occlude the fractals that we created // in example 1 the resultsare similar to example 4 except with a moving sphere instead of a stationary box // To start we create the renderer object krakatoasr::krakatoa_renderer renderer; // We then set the render resolution. Since this is the default it is not necessary however is normally // included. renderer.set_render_resolution( 640, 480 ); // create a triangle mesh object krakatoasr::triangle_mesh mesh; mesh.load_from_files_with_velocities( mesh, "sphere1.obj", "sphere2.obj", 1 ); renderer.add_mesh( &mesh, krakatoasr::animated_transform( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 1 ) ); // we are enabling motion blur to simulate motion renderer.enable_motion_blur( true ); // for the motion blur we are blurring it from time -1 to 1 taking 10 samples between that time and we are using // jittered motion blur renderer.set_motion_blur( 0, 1, 10, true ); // here we are creating a transform that we will be applying to the camera to move it 10 units in the z // direction krakatoasr::animated_transform cameraTransform = krakatoasr::animated_transform( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 10, 1 ); // we now apply the transform to the camera renderer.set_camera_tm( cameraTransform ); // Here we are setting the density of the particles in the final render. // after this change the end density will be 9*10^-1 renderer.set_density_per_particle( 9 ); // change the exponent on the final render particle density // after this change the end density will be 9*10^-3 renderer.set_density_exponent( -3 ); // we are now creating the parameters that will be used for the fractals krakatoasr::fractal_parameters fractalParams; // we are setting these parameters from a random generator using 5 affine transformations and 4 different colors // being used fractalParams.set_from_random( 5, 3, 46 ); // we now create the particle stream from the fractal parameters from last step with a total particle count of // 5,000,000 krakatoasr::particle_stream particleStream = krakatoasr::particle_stream::create_from_fractals( 5000000, fractalParams ); // we now add the particle stream to the renderer renderer.add_particle_stream( particleStream ); // since we are using emission instead of lights we must tell the renderer that. renderer.use_emission( true ); // for the emission we want to lower the strength so that all of the pixels are do not have there color washed // out in this example I am using 1*10^-2 renderer.set_emission_strength( 1.0 ); renderer.set_emission_strength_exponent( -2 ); // we now create a file saver to let krakatoa know where we want our results to go krakatoasr::file_saver fileSaver = krakatoasr::file_saver( "example08.exr" ); // add the file saver to the renderer renderer.set_render_save_callback( &fileSaver ); // and finally start the render renderer.render(); } catch( std::exception& e ) { std::cerr << e.what() << std::endl; return 1; } return 0; }