# The Firecracker Jailer ## Disclaimer The jailer is a program designed to isolate the Firecracker process in order to enhance Firecracker's security posture. It is meant to address the security needs of Firecracker only and is not intended to work with other binaries. Additionally, each jailer binary should be used with a statically linked Firecracker binary (with the default musl toolchain) of the same version. Experimental gnu builds are not supported. ## Jailer Usage The jailer is invoked in this manner: ``` bash jailer --id \ --exec-file \ --uid \ --gid [--parent-cgroup ] [--cgroup-version ] [--cgroup ] [--chroot-base-dir ] [--netns ] [--resource-limit ] [--daemonize] [--new-pid-ns] [--...extra arguments for Firecracker] ``` - `id` is the unique VM identification string, which may contain alphanumeric characters and hyphens. The maximum `id` length is currently 64 characters. - `exec_file` is the path to the Firecracker binary that will be exec-ed by the jailer. The filename must include the string `firecracker`. This is enforced because the interaction with the jailer is Firecracker specific. - `uid` and `gid` are the uid and gid the jailer switches to as it execs the target binary. - `parent-cgroup` is used to allow the placement of microvm cgroups in custom nested hierarchies. By specifying this parameter, the jailer will create a new cgroup named `id` for the microvm in the `/` subfolder. `cgroup_base` is the cgroup controller root for `cgroup v1` (e.g. `/sys/fs/cgroup/cpu`) or the unified controller hierarchy for `cgroup v2` ( e.g. `/sys/fs/cgroup/unified`. `` is a relative path within that hierarchy. For example, if `--parent-cgroup all_uvms/external_uvms` is specified, the jailer will write all cgroup parameters specified through `--cgroup` in `/sys/fs/cgroup//all_uvms/external_uvms/`. By default, the parent cgroup is `exec-file`. - `cgroup-version` is used to select which type of cgroup hierarchy to use for the creation of cgroups. The default value is "1" which means that cgroups specified with the `cgroup` argument will be created within a v1 hierarchy. Supported options are "1" for cgroup-v1 and "2" for cgroup-v2. - `cgroup` cgroups can be passed to the jailer to let it set the values when the microVM process is spawned. The `--cgroup` argument must follow this format: `=` (e.g `cpuset.cpus=0`). This argument can be used multiple times to set multiple cgroups. This is useful to avoid providing privileged permissions to another process for setting the cgroups before or after the jailer is executed. The `--cgroup` flag can help as well to set Firecracker process cgroups before the VM starts running, with no need to create the entire cgroup hierarchy manually (which requires privileged permissions). - `chroot_base` represents the base folder where chroot jails are built. The default is `/srv/jailer`. - `netns` represents the path to a network namespace handle. If present, the jailer will use this to join the associated network namespace. - For extra security and control over resource usage, `resource-limit` can be used to set bounds to the process resources. The `--resource-limit` argument must follow this format: `=` (e.g `no-file=1024`) and can be used multiple times to set multiple bounds. Current available resources that can be limited using this argument are: - `fsize`: The maximum size in bytes for files created by the process. - `no-file`: Specifies a value one greater than the maximum file descriptor number that can be opened by this process. Here is an example on how to set multiple resource limits using this argument: ```bash --resource-limit fsize=250000000 --resource-limit no-file=1024 ``` - When present, the `--daemonize` flag causes the jailer to call `setsid()` and redirect all three standard I/O file descriptors to `/dev/null`. - When present, the `--new-pid-ns` flag causes the jailer to spawn the provided binary into a new PID namespace. It makes use of the libc `clone()` function with the `CLONE_NEWPID` flag. As a result, the jailer and the process running the exec file have different PIDs. The PID of the child process is stored in the jail root directory inside `.pid`. - The jailer adheres to the "end of command options" convention, meaning all parameters specified after `--` are forwarded to Firecracker. For example, this can be paired with the `--config-file` Firecracker argument to specify a configuration file when starting Firecracker via the jailer (the file path and the resources referenced within must be valid relative to a jailed Firecracker). Please note the jailer already passes `--id` parameter to the Firecracker process. ## Jailer Operation After starting, the Jailer goes through the following operations: - Validate **all provided paths** and the VM `id`. - Close all open file descriptors based on `/proc//fd` except input, output and error. - Cleanup all environment variables received from the parent process. - Create the `///root` folder, which will be henceforth referred to as `chroot_dir`. `exec_file_name` is the last path component of `exec_file` (for example, that would be `firecracker` for `/usr/bin/firecracker`). Nothing is done if the path already exists (it should not, since `id` is supposed to be unique). - Copy `exec_file` to `///root/`. This ensures the new process will not share memory with any other Firecracker process. - Set resource bounds for current process and its children through `--resource-limit` argument, by calling `setrlimit()` system call with the specific resource argument. If no limits are provided, the jailer bounds `no-file` to a maximum default value of 2048. - Create the `cgroup` sub-folders. The jailer can use either `cgroup v1` or `cgroup v2`. On most systems, this is mounted by default in `/sys/fs/cgroup` (should be mounted by the user otherwise). The jailer will parse `/proc/mounts` to detect where each of the controllers required in `--cgroup` can be found (multiple controllers may share the same path). For each identified location (referred to as ``), the jailer creates the `//` subfolder, and writes the current pid to `///tasks`. Also, the value passed for each `` is written to the file. If `--node` is used the corresponding values are written to the appropriate `cpuset.mems` and `cpuset.cpus` files. - Call `unshare()` into a new mount namespace, use `pivot_root()` to switch the old system root mount point with a new one base in `chroot_dir`, switch the current working directory to the new root, unmount the old root mount point, and call `chroot` into the current directory. - Use `mknod` to create a `/dev/net/tun` equivalent inside the jail. - Use `mknod` to create a `/dev/kvm` equivalent inside the jail. - Use `chown` to change ownership of the `chroot_dir` (root path `/` as seen by the jailed firecracker), `/dev/net/tun`, `/dev/kvm`. The ownership is changed to the provided `uid:gid`. - If `--netns ` is present, attempt to join the specified network namespace. - If `--daemonize` is specified, call `setsid()` and redirect `STDIN`, `STDOUT`, and `STDERR` to `/dev/null`. - If `--new-pid-ns` is specified, call `clone()` with `CLONE_NEWPID` flag to spawn a new process within a new PID namespace. The new process will assume the role of init(1) in the new namespace. The parent will store child's PID inside `.pid`, while the child drops privileges and `exec()`s into the ``, as described below. - Drop privileges via setting the provided `uid` and `gid`. - Exec into ` --id= --start-time-us= --start-time-cpu-us=` (and also forward any extra arguments provided to the jailer after `--`, as mentioned in the **Jailer Usage** section), where: - `id`: (`string`) - The `id` argument provided to jailer. - `opaque`: (`number`) time calculated by the jailer that it spent doing its work. ## Example Run and Notes Let’s assume Firecracker is available as `/usr/bin/firecracker`, and the jailer can be found at `/usr/bin/jailer`. We pick the **unique id 551e7604-e35c-42b3-b825-416853441234**, and we choose to run on **NUMA node 0** (in order to isolate the process in the 0th NUMA node we need to set `cpuset.mems=0` and `cpuset.cpus` equals to the CPUs of that NUMA node), using **uid 123**, and **gid 100**. For this example, we are content with the default `/srv/jailer` chroot base dir. We start by running: ``` bash /usr/bin/jailer --id 551e7604-e35c-42b3-b825-416853441234 --cgroup cpuset.mems=0 --cgroup cpuset.cpus=$(cat /sys/devices/system/node/node0/cpulist) --exec-file /usr/bin/firecracker --uid 123 --gid 100 \ --netns /var/run/netns/my_netns --daemonize ``` After opening the file descriptors mentioned in the previous section, the jailer will create the following resources (and all their prerequisites, such as the path which contains them): - `/srv/jailer/firecracker/551e7604-e35c-42b3-b825-416853441234/root/firecracker` (copied from `/usr/bin/firecracker`) We are going to refer to `/srv/jailer/firecracker/551e7604-e35c-42b3-b825-416853441234/root` as ``. Let’s also assume the, **cpuset** cgroups are mounted at `/sys/fs/cgroup/cpuset`. The jailer will create the following subfolder (which will inherit settings from the parent cgroup): - `/sys/fs/cgroup/cpuset/firecracker/551e7604-e35c-42b3-b825-416853441234` It’s worth noting that, whenever a folder already exists, nothing will be done, and we move on to the next directory that needs to be created. This should only happen for the common `firecracker` subfolder (but, as for creating the chroot path before, we do not issue an error if folders directly associated with the supposedly unique `id` already exist). The jailer then writes the current pid to `/sys/fs/cgroup/cpuset/firecracker/551e7604-e35c-42b3-b825-416853441234/tasks`, It also writes `0` to `/sys/fs/cgroup/cpuset/firecracker/551e7604-e35c-42b3-b825-416853441234/cpuset.mems`, And the corresponding CPUs to `/sys/fs/cgroup/cpuset/firecracker/551e7604-e35c-42b3-b825-416853441234/cpuset.cpus`. Since the `--netns` parameter is specified in our example, the jailer opens `/var/run/netns/my_netns` to get a file descriptor `fd`, uses `setns(fd, CLONE_NEWNET)` to join the associated network namespace, and then closes `fd`. The `--daemonize` flag is also present, so the jailers opens `/dev/null` as **RW** and keeps the associate file descriptor as `dev_null_fd` (we do this before going inside the jail), to be used later. Build the chroot jail. First, the jailer uses `unshare()` to enter a new mount namespace, and changes the propagation of all mount points in the new namespace to private using `mount(NULL, “/”, NULL, MS_PRIVATE | MS_REC, NULL)`, as a prerequisite to `pivot_root()`. Another required operation is to bind mount `` on top of itself using `mount(, , NULL, MS_BIND, NULL)`. At this point, the jailer creates the folder `/old_root`, changes the current directory to ``, and calls `syscall(SYS_pivot_root, “.”, “old_root”)`. The final steps of building the jail are unmounting `old_root` using `umount2(“old_root”, MNT_DETACH)`, deleting `old_root` with `rmdir`, and finally calling `chroot(“.”)` for good measure. From now, the process is jailed in ``. Create the special file `/dev/net/tun`, using `mknod(“/dev/net/tun”, S_IFCHR | S_IRUSR | S_IWUSR, makedev(10, 200))`, and then call `chown(“/dev/net/tun”, 123, 100)`, so Firecracker can use it after dropping privileges. This is required to use multiple TAP interfaces when running jailed. Do the same for `/dev/kvm`. Change ownership of `` to `uid:gid` so that Firecracker can create its API socket there. Since the `--daemonize` flag is present, call `setsid()` to join a new session, a new process group, and to detach from the controlling terminal. Then, redirect standard file descriptors to `/dev/null` by calling `dup2(dev_null_fd, STDIN)`, `dup2(dev_null_fd, STDOUT)`, and `dup2(dev_null_fd, STDERR)`. Close `dev_null_fd`, because it is no longer necessary. Finally, the jailer switches the `uid` to `123`, and `gid` to `100`, and execs ```console ./firecracker \ --id="551e7604-e35c-42b3-b825-416853441234" \ --start-time-us= \ --start-time-cpu-us= ``` Now firecracker creates the socket at `/srv/jailer/firecracker/551e7604-e35c-42b3-b825-416853441234/root/` to interact with the VM. Note: default value for `` is `/run/firecracker.socket`. ### Observations - The user must create hard links for (or copy) any resources which will be provided to the VM via the API (disk images, kernel images, named pipes, etc) inside the jailed root folder. Also, permissions must be properly managed for these resources; for example the user which Firecracker runs as must have both **read and write permissions** to the backing file for a RW block device. - By default the VMs are not asigned to any NUMA node or pinned to any CPU. The user must manage any fine tuning of resource partitioning via cgroups, by using the `--cgroup` command line argument. - It’s up to the user to handle cleanup after running the jailer. One way to do this involves registering handlers with the cgroup `notify_on_release` mechanism, while being wary about potential race conditions (the instance crashing before the subscription process is complete, for example). - For extra resilience, the `--new-pid-ns` flag enables the Jailer to exec the binary file in a new PID namespace, in order to become a pseudo-init process. Alternatively, the user can spawn the jailer in a new PID namespace via a combination of `clone()` with the `CLONE_NEWPID` flag and `exec()`. - When running with `--daemonize`, the jailer will fail to start if it's a process group leader, because `setsid()` returns an error in this case. Spawning the jailer via `clone()` and `exec()` also ensures it cannot be a process group leader. - We run the jailer as the `root` user; it actually requires a more restricted set of capabilities, but that's to be determined as features stabilize. - The jailer can only log messages to stdout/err for now, which is why the logic associated with `--daemonize` runs towards the end, instead of the very beginning. We are working on adding better logging capabilities. ## Caveats - If all the cgroup controllers are bunched up on a single mount point using the "all" option, our current program logic will complain it cannot detect individual controller mount points.