# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import tvm from tvm import te import numpy as np from scipy import signal from tvm.contrib import nvcc from tvm import topi from tvm.topi.utils import get_const_tuple from tvm.topi.cuda.depthwise_conv2d import ( schedule_depthwise_conv2d_nchw, schedule_depthwise_conv2d_nhwc, ) TASK = "depthwise_conv2d" USE_MANUAL_CODE = False @tvm.register_func("tvm_callback_cuda_compile", override=True) def tvm_callback_cuda_compile(code): ptx = nvcc.compile_cuda(code, target_format="ptx") return ptx def write_code(code, fname): with open(fname, "w") as f: f.write(code) @tvm.register_func def tvm_callback_cuda_postproc(code): if not os.path.exists("perf"): os.mkdir("perf") write_code(code, "perf/%s_generated.cu" % TASK) if USE_MANUAL_CODE: code = open("perf/%s_manual.cu" % TASK).read() return code def test_depthwise_conv2d_nchw(): """You may test different settings.""" batch = 1 in_channel = 256 in_height = 96 in_width = 96 filter_channel = in_channel channel_multiplier = 1 filter_height = 3 filter_width = 3 stride_h = 1 stride_w = 1 padding = "SAME" # or 'VALID' # Placeholder Input = te.placeholder((batch, in_channel, in_height, in_width), name="Input") Filter = te.placeholder( (filter_channel, channel_multiplier, filter_height, filter_width), name="Filter" ) Stride = [stride_h, stride_w] Scale = te.placeholder((in_channel * channel_multiplier,), name="Scale") Shift = te.placeholder((in_channel * channel_multiplier,), name="Shift") # Declare DepthwiseConv2d = topi.nn.depthwise_conv2d_nchw(Input, Filter, Stride, padding) ScaleShift = topi.nn.scale_shift_nchw(DepthwiseConv2d, Scale, Shift) Relu = topi.nn.relu(ScaleShift) # Schedule s1 = schedule_depthwise_conv2d_nchw(DepthwiseConv2d) s2 = schedule_depthwise_conv2d_nchw(ScaleShift) s3 = schedule_depthwise_conv2d_nchw(Relu) input_np = np.random.uniform(size=get_const_tuple(Input.shape)).astype(Input.dtype) filter_np = np.random.uniform(size=get_const_tuple(Filter.shape)).astype(Filter.dtype) scale_np = np.random.uniform(size=(in_channel * channel_multiplier)).astype(Scale.dtype) shift_np = np.random.uniform(size=(in_channel * channel_multiplier)).astype(Shift.dtype) def check_device(device): if not tvm.runtime.enabled(device): print("Skip because %s is not enabled" % device) return dev = tvm.device(device, 0) # Build the kernel f1 = tvm.build(s1, [Input, Filter, DepthwiseConv2d], device) f2 = tvm.build(s2, [Input, Filter, Scale, Shift, ScaleShift], device) f3 = tvm.build(s3, [Input, Filter, Scale, Shift, Relu], device) # Prepare data input_tvm = tvm.nd.array(input_np, dev) filter_tvm = tvm.nd.array(filter_np, dev) scale_tvm = tvm.nd.array(scale_np, dev) shift_tvm = tvm.nd.array(shift_np, dev) depthwise_conv2d_tvm = tvm.nd.array( np.zeros(shape=get_const_tuple(DepthwiseConv2d.shape), dtype=DepthwiseConv2d.dtype), dev ) scale_shift_tvm = tvm.nd.array( np.zeros(shape=get_const_tuple(ScaleShift.shape), dtype=ScaleShift.dtype), dev ) relu_tvm = tvm.nd.array(np.zeros(shape=get_const_tuple(Relu.shape), dtype=Relu.dtype), dev) # Measure time cost of kernel 1 (depthwise_conv2d) timer_1 = f1.time_evaluator(f1.entry_name, dev, number=1000) tcost_1 = timer_1(input_tvm, filter_tvm, depthwise_conv2d_tvm).mean # Measure time cost of kernel 2 (depthwise_conv2d + scale_shift) timer_2 = f2.time_evaluator(f2.entry_name, dev, number=1000) tcost_2 = timer_2(input_tvm, filter_tvm, scale_tvm, shift_tvm, scale_shift_tvm).mean # Measure time cost of kernel 3 (depthwise_conv2d + scale_shift + relu) timer_3 = f3.time_evaluator(f3.entry_name, dev, number=1000) tcost_3 = timer_3(input_tvm, filter_tvm, scale_tvm, shift_tvm, relu_tvm).mean print("Input shape = " + str(get_const_tuple(Input.shape))) print("Filter shape = " + str(get_const_tuple(Filter.shape))) print("Stride = (%d, %d)" % (stride_h, stride_w)) print("padding = %s\n" % padding) print("Output shape = " + str(get_const_tuple(DepthwiseConv2d.shape))) print("average time cost of 1000 runs (depthwise_conv2d) = %g us" % (tcost_1 * 1e6)) print( "average time cost of 1000 runs (depthwise_conv2d + scale_shift) = %g us" % (tcost_2 * 1e6) ) print( "average time cost of 1000 runs (depthwise_conv2d + scale_shift + relu) = %g us" % (tcost_3 * 1e6) ) # correctness depthwise_conv2d_scipy = tvm.topi.testing.depthwise_conv2d_python_nchw( input_np, filter_np, stride=[stride_h, stride_w], padding=padding ) scale_shift_scipy = np.zeros(shape=get_const_tuple(ScaleShift.shape)) for c in range(in_channel * channel_multiplier): scale_shift_scipy[:, c, :, :] = ( depthwise_conv2d_scipy[:, c, :, :] * scale_np[c] + shift_np[c] ) relu_scipy = np.maximum(scale_shift_scipy, 0) tvm.testing.assert_allclose(depthwise_conv2d_tvm.numpy(), depthwise_conv2d_scipy, rtol=1e-5) tvm.testing.assert_allclose(scale_shift_tvm.numpy(), scale_shift_scipy, rtol=1e-5) tvm.testing.assert_allclose(relu_tvm.numpy(), relu_scipy, rtol=1e-5) print("success") for device in ["cuda", "opencl", "rocm"]: with tvm.transform.PassContext( config={"tir.UnrollLoop": {"auto_max_step": 128, "explicit_unroll": device != "rocm"}} ): check_device(device) def test_depthwise_conv2d_nhwc(): """You may test different settings.""" batch = 1 in_channel = 256 in_height = 96 in_width = 96 filter_channel = in_channel channel_multiplier = 1 filter_height = 3 filter_width = 3 stride_h = 1 stride_w = 1 padding = "SAME" # or 'VALID' # Placeholder Input = te.placeholder((batch, in_height, in_width, in_channel), name="Input") Filter = te.placeholder( (filter_height, filter_width, filter_channel, channel_multiplier), name="Filter" ) Stride = [stride_h, stride_w] Scale = te.placeholder((in_channel * channel_multiplier,), name="Scale") Shift = te.placeholder((in_channel * channel_multiplier,), name="Shift") # Declare DepthwiseConv2d = topi.nn.depthwise_conv2d_nhwc(Input, Filter, Stride, padding) ScaleShift = topi.nn.scale_shift_nhwc(DepthwiseConv2d, Scale, Shift) Relu = topi.nn.relu(ScaleShift) # Schedule s1 = schedule_depthwise_conv2d_nhwc(DepthwiseConv2d) s2 = schedule_depthwise_conv2d_nhwc(ScaleShift) s3 = schedule_depthwise_conv2d_nhwc(Relu) input_np = np.random.uniform(size=get_const_tuple(Input.shape)).astype(Input.dtype) filter_np = np.random.uniform(size=get_const_tuple(Filter.shape)).astype(Filter.dtype) scale_np = np.random.uniform(size=(in_channel * channel_multiplier)).astype(Scale.dtype) shift_np = np.random.uniform(size=(in_channel * channel_multiplier)).astype(Shift.dtype) def check_device(device): if not tvm.runtime.enabled(device): print("Skip because %s is not enabled" % device) return dev = tvm.device(device, 0) # Build the kernel f1 = tvm.build(s1, [Input, Filter, DepthwiseConv2d], device) f2 = tvm.build(s2, [Input, Filter, Scale, Shift, ScaleShift], device) f3 = tvm.build(s3, [Input, Filter, Scale, Shift, Relu], device) # Prepare data input_tvm = tvm.nd.array(input_np, dev) filter_tvm = tvm.nd.array(filter_np, dev) scale_tvm = tvm.nd.array(scale_np, dev) shift_tvm = tvm.nd.array(shift_np, dev) depthwise_conv2d_tvm = tvm.nd.array( np.zeros(shape=get_const_tuple(DepthwiseConv2d.shape), dtype=DepthwiseConv2d.dtype), dev ) scale_shift_tvm = tvm.nd.array( np.zeros(shape=get_const_tuple(ScaleShift.shape), dtype=ScaleShift.dtype), dev ) relu_tvm = tvm.nd.array(np.zeros(shape=get_const_tuple(Relu.shape), dtype=Relu.dtype), dev) # Measure time cost of kernel 1 (depthwise_conv2d) timer_1 = f1.time_evaluator(f1.entry_name, dev, number=1000) tcost_1 = timer_1(input_tvm, filter_tvm, depthwise_conv2d_tvm).mean # Measure time cost of kernel 2 (depthwise_conv2d + scale_shift) timer_2 = f2.time_evaluator(f2.entry_name, dev, number=1000) tcost_2 = timer_2(input_tvm, filter_tvm, scale_tvm, shift_tvm, scale_shift_tvm).mean # Measure time cost of kernel 3 (depthwise_conv2d + scale_shift + relu) timer_3 = f3.time_evaluator(f3.entry_name, dev, number=1000) tcost_3 = timer_3(input_tvm, filter_tvm, scale_tvm, shift_tvm, relu_tvm).mean print("Input shape = " + str(get_const_tuple(Input.shape))) print("Filter shape = " + str(get_const_tuple(Filter.shape))) print("Stride = (%d, %d)" % (stride_h, stride_w)) print("padding = %s\n" % padding) print("Output shape = " + str(get_const_tuple(DepthwiseConv2d.shape))) print("average time cost of 1000 runs (depthwise_conv2d) = %g us" % (tcost_1 * 1e6)) print( "average time cost of 1000 runs (depthwise_conv2d + scale_shift) = %g us" % (tcost_2 * 1e6) ) print( "average time cost of 1000 runs (depthwise_conv2d + scale_shift + relu) = %g us" % (tcost_3 * 1e6) ) # correctness depthwise_conv2d_scipy = tvm.topi.testing.depthwise_conv2d_python_nhwc( input_np, filter_np, stride=[stride_h, stride_w], padding=padding ) scale_shift_scipy = np.zeros(shape=get_const_tuple(ScaleShift.shape)) for c in range(in_channel * channel_multiplier): scale_shift_scipy[:, :, :, c] = ( depthwise_conv2d_scipy[:, :, :, c] * scale_np[c] + shift_np[c] ) relu_scipy = np.maximum(scale_shift_scipy, 0) tvm.testing.assert_allclose(depthwise_conv2d_tvm.numpy(), depthwise_conv2d_scipy, rtol=1e-5) tvm.testing.assert_allclose(scale_shift_tvm.numpy(), scale_shift_scipy, rtol=1e-5) tvm.testing.assert_allclose(relu_tvm.numpy(), relu_scipy, rtol=1e-5) print("success") for device in ["cuda", "opencl", "rocm"]: with tvm.transform.PassContext( config={"tir.UnrollLoop": {"auto_max_step": 128, "explicit_unroll": device != "cuda"}} ): check_device(device) if __name__ == "__main__": test_depthwise_conv2d_nchw() test_depthwise_conv2d_nhwc()