# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Compile ONNX Models =================== **Author**: `Joshua Z. Zhang `_ This article is an introductory tutorial to deploy ONNX models with Relay. For us to begin with, ONNX package must be installed. A quick solution is to install protobuf compiler, and .. code-block:: bash pip install --user onnx onnxoptimizer or please refer to official site. https://github.com/onnx/onnx """ import onnx import numpy as np import tvm from tvm import te import tvm.relay as relay from tvm.contrib.download import download_testdata ###################################################################### # Load pretrained ONNX model # --------------------------------------------- # The example super resolution model used here is exactly the same model in onnx tutorial # http://pytorch.org/tutorials/advanced/super_resolution_with_caffe2.html # we skip the pytorch model construction part, and download the saved onnx model model_url = "".join( [ "https://gist.github.com/zhreshold/", "bcda4716699ac97ea44f791c24310193/raw/", "93672b029103648953c4e5ad3ac3aadf346a4cdc/", "super_resolution_0.2.onnx", ] ) model_path = download_testdata(model_url, "super_resolution.onnx", module="onnx") # now you have super_resolution.onnx on disk onnx_model = onnx.load(model_path) ###################################################################### # Load a test image # --------------------------------------------- # A single cat dominates the examples! This model takes a single input image of size # 224x224 and outputs a scaled image that is 3x greater than the input along each # axis, a 672x672 image. Re-scale the cat image to fit this input shape then # convert to `YCbCr`. The super resolution model will then be applied to the # luminance (`Y`) channel. from PIL import Image img_url = "https://github.com/dmlc/mxnet.js/blob/main/data/cat.png?raw=true" img_path = download_testdata(img_url, "cat.png", module="data") img = Image.open(img_path).resize((224, 224)) img_ycbcr = img.convert("YCbCr") # convert to YCbCr img_y, img_cb, img_cr = img_ycbcr.split() x = np.array(img_y)[np.newaxis, np.newaxis, :, :] ###################################################################### # Compile the model with relay # --------------------------------------------- # Typically ONNX models mix model input values with parameter values, with # the input having the name `1`. This model dependent, and you should check # with the documentation for your model to determine the full input and # parameter name space. # # Passing in the shape dictionary to the `relay.frontend.from_onnx` method # tells relay which ONNX parameters are inputs, and which are parameters, and # provides a static definition of the input size. target = "llvm" input_name = "1" shape_dict = {input_name: x.shape} mod, params = relay.frontend.from_onnx(onnx_model, shape_dict) with tvm.transform.PassContext(opt_level=1): executor = relay.build_module.create_executor( "graph", mod, tvm.cpu(0), target, params ).evaluate() ###################################################################### # Execute on TVM # --------------------------------------------- dtype = "float32" tvm_output = executor(tvm.nd.array(x.astype(dtype))).numpy() ###################################################################### # Display results # --------------------------------------------- # We put input and output image neck to neck. The luminance channel, `Y` is the output # from the model. The chroma channels `Cb` and `Cr` are resized to match with a simple # bicubic algorithm. The image is then recombined and converted back to `RGB`. from matplotlib import pyplot as plt out_y = Image.fromarray(np.uint8((tvm_output[0, 0]).clip(0, 255)), mode="L") out_cb = img_cb.resize(out_y.size, Image.BICUBIC) out_cr = img_cr.resize(out_y.size, Image.BICUBIC) result = Image.merge("YCbCr", [out_y, out_cb, out_cr]).convert("RGB") canvas = np.full((672, 672 * 2, 3), 255) canvas[0:224, 0:224, :] = np.asarray(img) canvas[:, 672:, :] = np.asarray(result) plt.imshow(canvas.astype(np.uint8)) plt.show() ###################################################################### # Notes # --------------------------------------------- # By default, ONNX defines models in terms of dynamic shapes. The ONNX importer # retains that dynamism upon import, and the compiler attempts to convert the model # into a static shapes at compile time. If this fails, there may still be dynamic # operations in the model. Not all TVM kernels currently support dynamic shapes, # please file an issue on discuss.tvm.apache.org if you hit an error with dynamic kernels. # # This particular model was build using an older version of ONNX. During the import # phase ONNX importer will run the ONNX verifier, which may throw a `Mismatched attribute type` # warning. Because TVM supports a number of different ONNX versions, the Relay model # will still be valid.