# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Compile TFLite Models ===================== **Author**: `Zhao Wu `_ This article is an introductory tutorial to deploy TFLite models with Relay. To get started, TFLite package needs to be installed as prerequisite. .. code-block:: bash # install tflite pip install tflite==2.1.0 --user or you could generate TFLite package yourself. The steps are the following: .. code-block:: bash # Get the flatc compiler. # Please refer to https://github.com/google/flatbuffers for details # and make sure it is properly installed. flatc --version # Get the TFLite schema. wget https://raw.githubusercontent.com/tensorflow/tensorflow/r1.13/tensorflow/lite/schema/schema.fbs # Generate TFLite package. flatc --python schema.fbs # Add current folder (which contains generated tflite module) to PYTHONPATH. export PYTHONPATH=${PYTHONPATH:+$PYTHONPATH:}$(pwd) Now please check if TFLite package is installed successfully, ``python -c "import tflite"`` Below you can find an example on how to compile TFLite model using TVM. """ ###################################################################### # Utils for downloading and extracting zip files # ---------------------------------------------- import os def extract(path): import tarfile if path.endswith("tgz") or path.endswith("gz"): dir_path = os.path.dirname(path) tar = tarfile.open(path) tar.extractall(path=dir_path) tar.close() else: raise RuntimeError("Could not decompress the file: " + path) ###################################################################### # Load pretrained TFLite model # ---------------------------- # Load mobilenet V1 TFLite model provided by Google from tvm.contrib.download import download_testdata model_url = "http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz" # Download model tar file and extract it to get mobilenet_v1_1.0_224.tflite model_path = download_testdata(model_url, "mobilenet_v1_1.0_224.tgz", module=["tf", "official"]) model_dir = os.path.dirname(model_path) extract(model_path) # Now we can open mobilenet_v1_1.0_224.tflite tflite_model_file = os.path.join(model_dir, "mobilenet_v1_1.0_224.tflite") tflite_model_buf = open(tflite_model_file, "rb").read() # Get TFLite model from buffer try: import tflite tflite_model = tflite.Model.GetRootAsModel(tflite_model_buf, 0) except AttributeError: import tflite.Model tflite_model = tflite.Model.Model.GetRootAsModel(tflite_model_buf, 0) ###################################################################### # Load a test image # ----------------- # A single cat dominates the examples! from PIL import Image from matplotlib import pyplot as plt import numpy as np image_url = "https://github.com/dmlc/mxnet.js/blob/main/data/cat.png?raw=true" image_path = download_testdata(image_url, "cat.png", module="data") resized_image = Image.open(image_path).resize((224, 224)) plt.imshow(resized_image) plt.show() image_data = np.asarray(resized_image).astype("float32") # Add a dimension to the image so that we have NHWC format layout image_data = np.expand_dims(image_data, axis=0) # Preprocess image as described here: # https://github.com/tensorflow/models/blob/edb6ed22a801665946c63d650ab9a0b23d98e1b1/research/slim/preprocessing/inception_preprocessing.py#L243 image_data[:, :, :, 0] = 2.0 / 255.0 * image_data[:, :, :, 0] - 1 image_data[:, :, :, 1] = 2.0 / 255.0 * image_data[:, :, :, 1] - 1 image_data[:, :, :, 2] = 2.0 / 255.0 * image_data[:, :, :, 2] - 1 print("input", image_data.shape) ###################################################################### # Compile the model with relay # ---------------------------- # TFLite input tensor name, shape and type input_tensor = "input" input_shape = (1, 224, 224, 3) input_dtype = "float32" # Parse TFLite model and convert it to a Relay module from tvm import relay, transform mod, params = relay.frontend.from_tflite( tflite_model, shape_dict={input_tensor: input_shape}, dtype_dict={input_tensor: input_dtype} ) # Build the module against to x86 CPU target = "llvm" with transform.PassContext(opt_level=3): lib = relay.build(mod, target, params=params) ###################################################################### # Execute on TVM # -------------- import tvm from tvm import te from tvm.contrib import graph_executor as runtime # Create a runtime executor module module = runtime.GraphModule(lib["default"](tvm.cpu())) # Feed input data module.set_input(input_tensor, tvm.nd.array(image_data)) # Run module.run() # Get output tvm_output = module.get_output(0).numpy() ###################################################################### # Display results # --------------- # Load label file label_file_url = "".join( [ "https://raw.githubusercontent.com/", "tensorflow/tensorflow/master/tensorflow/lite/java/demo/", "app/src/main/assets/", "labels_mobilenet_quant_v1_224.txt", ] ) label_file = "labels_mobilenet_quant_v1_224.txt" label_path = download_testdata(label_file_url, label_file, module="data") # List of 1001 classes with open(label_path) as f: labels = f.readlines() # Convert result to 1D data predictions = np.squeeze(tvm_output) # Get top 1 prediction prediction = np.argmax(predictions) # Convert id to class name and show the result print("The image prediction result is: id " + str(prediction) + " name: " + labels[prediction])