# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ .. _tutorial-deploy-model-on-android: Deploy the Pretrained Model on Android ======================================= **Author**: `Tomohiro Kato `_ This is an example of using Relay to compile a keras model and deploy it on Android device. """ import os import numpy as np from PIL import Image import keras from keras.applications.mobilenet_v2 import MobileNetV2 import tvm from tvm import te import tvm.relay as relay from tvm import rpc from tvm.contrib import utils, ndk, graph_executor as runtime from tvm.contrib.download import download_testdata ###################################################################### # Setup Environment # ----------------- # Since there are many required packages for Android, it is recommended to use the official Docker Image. # # First, to build and run Docker Image, we can run the following command. # # .. code-block:: bash # # git clone --recursive https://github.com/apache/tvm tvm # cd tvm # docker build -t tvm.demo_android -f docker/Dockerfile.demo_android ./docker # docker run --pid=host -h tvm -v $PWD:/workspace \ # -w /workspace -p 9190:9190 --name tvm -it tvm.demo_android bash # # You are now inside the container. The cloned TVM directory is mounted on /workspace. # At this time, mount the 9190 port used by RPC described later. # # .. note:: # # Please execute the following steps in the container. # We can execute :code:`docker exec -it tvm bash` to open a new terminal in the container. # # Next we build the TVM. # # .. code-block:: bash # # mkdir build # cd build # cmake -DUSE_LLVM=llvm-config-8 \ # -DUSE_RPC=ON \ # -DUSE_SORT=ON \ # -DUSE_VULKAN=ON \ # -DUSE_GRAPH_EXECUTOR=ON \ # .. # make -j10 # # After building TVM successfully, Please set PYTHONPATH. # # .. code-block:: bash # # echo 'export PYTHONPATH=/workspace/python:/workspace/vta/python:${PYTHONPATH}' >> ~/.bashrc # source ~/.bashrc ################################################################# # Start RPC Tracker # ----------------- # TVM uses RPC session to communicate with Android device. # # To start an RPC tracker, run this command in the container. The tracker is # required during the whole tuning process, so we need to open a new terminal for # this command: # # .. code-block:: bash # # python3 -m tvm.exec.rpc_tracker --host=0.0.0.0 --port=9190 # # The expected output is # # .. code-block:: bash # # INFO:RPCTracker:bind to 0.0.0.0:9190 ################################################################# # Register Android device to RPC Tracker # -------------------------------------- # Now we can register our Android device to the tracker. # # Follow this `readme page `_ to # install TVM RPC APK on the android device. # # Here is an example of config.mk. I enabled OpenCL and Vulkan. # # # .. code-block:: bash # # APP_ABI = arm64-v8a # # APP_PLATFORM = android-24 # # # whether enable OpenCL during compile # USE_OPENCL = 1 # # # whether to enable Vulkan during compile # USE_VULKAN = 1 # # ifeq ($(USE_VULKAN), 1) # # Statically linking vulkan requires API Level 24 or higher # APP_PLATFORM = android-24 # endif # # # the additional include headers you want to add, e.g., SDK_PATH/adrenosdk/Development/Inc # ADD_C_INCLUDES += /work/adrenosdk-linux-5_0/Development/Inc # # downloaded from https://github.com/KhronosGroup/OpenCL-Headers # ADD_C_INCLUDES += /usr/local/OpenCL-Headers/ # # # the additional link libs you want to add, e.g., ANDROID_LIB_PATH/libOpenCL.so # ADD_LDLIBS = /workspace/pull-from-android-device/libOpenCL.so # # .. note:: # # At this time, don't forget to `create a standalone toolchain `_ . # # for example # # .. code-block:: bash # # $ANDROID_NDK_HOME/build/tools/make-standalone-toolchain.sh \ # --platform=android-24 --use-llvm --arch=arm64 --install-dir=/opt/android-toolchain-arm64 # export TVM_NDK_CC=/opt/android-toolchain-arm64/bin/aarch64-linux-android-g++ # # Next, start the Android application and enter the IP address and port of RPC Tracker. # Then you have already registered your device. # # After registering devices, we can confirm it by querying rpc_tracker # # .. code-block:: bash # # python3 -m tvm.exec.query_rpc_tracker --host=0.0.0.0 --port=9190 # # For example, if we have 1 Android device. # the output can be # # .. code-block:: bash # # Queue Status # ---------------------------------- # key total free pending # ---------------------------------- # android 1 1 0 # ---------------------------------- # # To confirm that you can communicate with Android, we can run following test script. # If you use OpenCL and Vulkan, please set :code:`test_opencl` and :code:`test_vulkan` in the script. # # .. code-block:: bash # # export TVM_TRACKER_HOST=0.0.0.0 # export TVM_TRACKER_PORT=9190 # # .. code-block:: bash # # cd /workspace/apps/android_rpc # python3 tests/android_rpc_test.py # ###################################################################### # Load pretrained keras model # --------------------------- # We load a pretrained MobileNetV2(alpha=0.5) classification model provided by keras. keras.backend.clear_session() # Destroys the current TF graph and creates a new one. weights_url = "".join( [ "https://github.com/JonathanCMitchell/", "mobilenet_v2_keras/releases/download/v1.1/", "mobilenet_v2_weights_tf_dim_ordering_tf_kernels_0.5_224.h5", ] ) weights_file = "mobilenet_v2_weights.h5" weights_path = download_testdata(weights_url, weights_file, module="keras") keras_mobilenet_v2 = MobileNetV2( alpha=0.5, include_top=True, weights=None, input_shape=(224, 224, 3), classes=1000 ) keras_mobilenet_v2.load_weights(weights_path) ###################################################################### # In order to test our model, here we download an image of cat and # transform its format. img_url = "https://github.com/dmlc/mxnet.js/blob/main/data/cat.png?raw=true" img_name = "cat.png" img_path = download_testdata(img_url, img_name, module="data") image = Image.open(img_path).resize((224, 224)) dtype = "float32" def transform_image(image): image = np.array(image) - np.array([123.0, 117.0, 104.0]) image /= np.array([58.395, 57.12, 57.375]) image = image.transpose((2, 0, 1)) image = image[np.newaxis, :] return image x = transform_image(image) ###################################################################### # synset is used to transform the label from number of ImageNet class to # the word human can understand. synset_url = "".join( [ "https://gist.githubusercontent.com/zhreshold/", "4d0b62f3d01426887599d4f7ede23ee5/raw/", "596b27d23537e5a1b5751d2b0481ef172f58b539/", "imagenet1000_clsid_to_human.txt", ] ) synset_name = "imagenet1000_clsid_to_human.txt" synset_path = download_testdata(synset_url, synset_name, module="data") with open(synset_path) as f: synset = eval(f.read()) ###################################################################### # Compile the model with relay # ---------------------------- # If we run the example on our x86 server for demonstration, we can simply # set it as :code:`llvm`. If running it on the Android device, we need to # specify its instruction set. Set :code:`local_demo` to False if you want # to run this tutorial with a real device. local_demo = True # by default on CPU target will execute. # select 'cpu', 'opencl' and 'vulkan' test_target = "cpu" # Change target configuration. # Run `adb shell cat /proc/cpuinfo` to find the arch. arch = "arm64" target = tvm.target.Target("llvm -mtriple=%s-linux-android" % arch) if local_demo: target = tvm.target.Target("llvm") elif test_target == "opencl": target = tvm.target.Target("opencl", host=target) elif test_target == "vulkan": target = tvm.target.Target("vulkan", host=target) input_name = "input_1" shape_dict = {input_name: x.shape} mod, params = relay.frontend.from_keras(keras_mobilenet_v2, shape_dict) with tvm.transform.PassContext(opt_level=3): lib = relay.build(mod, target=target, params=params) # After `relay.build`, you will get three return values: graph, # library and the new parameter, since we do some optimization that will # change the parameters but keep the result of model as the same. # Save the library at local temporary directory. tmp = utils.tempdir() lib_fname = tmp.relpath("net.so") fcompile = ndk.create_shared if not local_demo else None lib.export_library(lib_fname, fcompile) ###################################################################### # Deploy the Model Remotely by RPC # -------------------------------- # With RPC, you can deploy the model remotely from your host machine # to the remote android device. tracker_host = os.environ.get("TVM_TRACKER_HOST", "127.0.0.1") tracker_port = int(os.environ.get("TVM_TRACKER_PORT", 9190)) key = "android" if local_demo: remote = rpc.LocalSession() else: tracker = rpc.connect_tracker(tracker_host, tracker_port) # When running a heavy model, we should increase the `session_timeout` remote = tracker.request(key, priority=0, session_timeout=60) if local_demo: dev = remote.cpu(0) elif test_target == "opencl": dev = remote.cl(0) elif test_target == "vulkan": dev = remote.vulkan(0) else: dev = remote.cpu(0) # upload the library to remote device and load it remote.upload(lib_fname) rlib = remote.load_module("net.so") # create the remote runtime module module = runtime.GraphModule(rlib["default"](dev)) ###################################################################### # Execute on TVM # -------------- # set input data module.set_input(input_name, tvm.nd.array(x.astype(dtype))) # run module.run() # get output out = module.get_output(0) # get top1 result top1 = np.argmax(out.numpy()) print("TVM prediction top-1: {}".format(synset[top1])) print("Evaluate inference time cost...") print(module.benchmark(dev, number=1, repeat=10)) ###################################################################### # Sample Output # ------------- # The following is the result of 'cpu', 'opencl' and 'vulkan' using Adreno 530 on Snapdragon 820 # # Although we can run on a GPU, it is slower than CPU. # To speed up, we need to write and optimize the schedule according to the GPU architecture. # # .. code-block:: bash # # # cpu # TVM prediction top-1: tiger cat # Evaluate inference time cost... # Mean inference time (std dev): 37.92 ms (19.67 ms) # # # opencl # TVM prediction top-1: tiger cat # Evaluate inference time cost... # Mean inference time (std dev): 419.83 ms (7.49 ms) # # # vulkan # TVM prediction top-1: tiger cat # Evaluate inference time cost... # Mean inference time (std dev): 465.80 ms (4.52 ms)